Skip to main content
Log in

Lamp processing- and heat treatment-induced structural transformations of an amorphous Al85Ni10La5 alloy: Hardness and local plasticity

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the structural transformations and deformation behavior of an amorphous Al85Ni10La5 alloy during nanoindentation and uniaxial tension tests and assessed the influence of crystalline phases resulting from lamp processing and heat treatment. Our results confirm the high effectiveness of lamp processing: at identical phase compositions, the lamp processing time is shorter by more than two orders of magnitude. The microplasticity of the amorphous alloy has been shown to manifest itself in both nanoindentation and uniaxial tension tests. The high proportion of local plasticity in the work of indentation has been accounted for in terms of possible intercluster sliding. The observed lamp processing- and heat treatmentinduced changes in the hardness of the alloy reflect changes in its phase composition and the percentages of the amorphous and crystalline phases, which does not rule out a cluster mechanism of local deformation or its deceleration by nanocrystalline phases in the amorphous–nanocrystalline structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schuh, C.A., Hufnagel, T.C., and Ramamurty, U., Mechanical behavior of amorphous alloys, Acta Mater., 2007, vol. 55, no. 12, pp. 4067–4109.

    Article  CAS  Google Scholar 

  2. Argon, A.S. and Kuo, H.Y., Plastic flow in a disordered bubble raft (an analog of a metallic glass), Mater. Sci. Eng., A, 1979, vol. 39, no. 1, pp. 101–109.

    Article  Google Scholar 

  3. Srolovitz, D., Vitek, V., and Egami, T., An atomistic study of deformation of amorphous metals, Acta Metall., 1983, no. 31, pp. 335–352.

    Article  CAS  Google Scholar 

  4. Langer, J.S., Shear-transformation-zone theory of deformation in metallic glasses, Scr. Mater., 2005, no. 54, pp. 375–379.

    Article  Google Scholar 

  5. Cohen, M.H. and Turnbull, D., Molecular transport in liquids and glasses, J. Chem. Phys., 1959, no. 31, pp. 1164–1169.

    Article  CAS  Google Scholar 

  6. Spaepen, F., A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall., 1977, vol. 25, no. 4, pp. 407–415.

    Article  CAS  Google Scholar 

  7. Amorfnye metallicheskie splavy (Amorphous Metallic Alloys), Lyuborskii, F.E., Ed., Moscow: Metallurgiya, 1987.

  8. Deich, D.B., Kosilov, A.T., Evteev, A.V., and Levchenko, E.V., Structural transformations accompanying the glass transition of Fe83P17 alloy: molecular dynamics simulation, Fiz. Khim. Obrab. Mater., 2007, no. 4, pp. 62–67.

    Google Scholar 

  9. Aleynikova, K.B., Zmeykin, A.A., Zinchenko, E.N., and Ievlev, V.M., Analysis of the atomic structure of metallic glass of composition Al87Ni10Nd3 with the use of a fragmentary model, Glass Phys. Chem., 2012, vol. 38, no. 1, pp. 71–76.

    Article  CAS  Google Scholar 

  10. Dai, L.H., Liu, L.F., Yan, M., et al., Serrated plastic flow in a Zr-based bulk metallic glass during nanoindentation, Chin. Phys. Lett., 2004, vol. 21, pp. 1593–1595.

    Article  CAS  Google Scholar 

  11. Gao, Y.F., Yang, B., and Nieh, T.G., Thermomechanical instability analysis of inhomogeneous deformation in amorphous alloys, Acta. Mater., 2007, vol. 55, pp. 2319–2327.

    Article  CAS  Google Scholar 

  12. Ievlev, V.M., Kannykin, S.V., Il’inova, T.N., Volodina, M.S., Bobrinskaya, E.V., Baikin, A.S., Vavilova, V.V., and Serikov, D.V., Crystallization behavior, mechanical properties, and corrosion resistance of an amorphous Fe76.5P13.6Si4.8Mn2.4V0.2C2.5 alloy, Inorg. Mater., 2016, vol. 52, no. 7, pp. 677–685. doi 10.1134/S0020168516070050

    Article  CAS  Google Scholar 

  13. Bakai, A.S., Poliklasternye amorfnye tela (Polycluster Amorphous Solids), Moscow: Energoatomizdat, 1987.

    Google Scholar 

  14. Anosova, M.O., Baldokhin, Yu.V., Vavilova, V.V., Korneev, V.P., and Palii, N.A., Nanostructure forming in soft magnetic Fe–P–Si–Mn–V and Fe–P–Si–Mn–V–C alloys upon annealing, Russ. Metall. (Engl. Transl.), 2011, no. 3, pp. 239–247.

    Article  Google Scholar 

  15. IKhS RAN-80 let. Istoricheskie ocherki (Eighty Years of the Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences: Historical Sketches), Shevchenko, V.Ya., Ed., St. Petersburg: Art-Ekspress, 2016.

  16. Ievlev, V.M., Kostyuchenko, A.V., Darinskii, B.M., and Barinov, S.M., Hardness and microplasticity of nanocrystalline and amorphous calcium phosphate coatings, Phys. Solid State, 2014, vol. 56, no. 2, pp. 321–329.

    Article  CAS  Google Scholar 

  17. Ievlev, V.M., Activation of solid-state processes by light from gas-discharge lamps, Usp. Khim., 2013, vol. 82, no. 9, pp. 815–834.

    Article  Google Scholar 

  18. Glezer, A.M. and Shurygina, N.A., Amorfno-nanokristallicheskie splavy (Amorphous–Nanocrystalline Alloys), Moscow: Fizmatlit, 2013.

    Google Scholar 

  19. Bresson, L., Chevalier, J.P., and Fayard, M., Bend testing metallic glasses. Effect of heat treatment on the mechanical properties of Cu60Zr40, Scr. Metall., 1982, no. 16, pp. 499–502.

    Article  CAS  Google Scholar 

  20. Koebrugge, G.W. and van den Beukel, A., Free volume dependence of CSRO kinetics in amorphous Fe40Ni40B20, Scr. Metall., 1988, no. 22, pp. 589–593.

    Article  CAS  Google Scholar 

  21. Kovneristyi, Yu.K., Bakhteeva, N.D., Belousov, O.K., and Popova, E.V., Effect of heat treatment on the structure and microhardness of rapidly quenched Al–Ni–Fe–La alloys, Deform. Razrush. Met., 2005, no. 10, pp. 13–17.

    Google Scholar 

  22. Belkhaoudaa, M., Bazzia, L., Benlhachemib, A., Salghic, R., Hammoutid, B., and Kertite, S., Effect of the heat treatment on the corrosion behaviour of amorphous Fe–Cr–P–C–Si alloy in 0.5 M H2SO4, Appl. Surf. Sci., 2006, no. 252, pp. 7921–7925.

    Article  Google Scholar 

  23. Kornienkov, B.A. and Artamonov, E.V., Improving the magnetic properties of a 2 NSR amorphous alloy, Stal’, 2009, no. 6, pp. 69–71.

    Google Scholar 

  24. Ievlev, V.M., Activation of solid-state processes by light from gas-discharge lamps, Usp. Khim., 2013, vol. 82, no. 9, pp. 815–834.

    Article  Google Scholar 

  25. Vavilova, V.V., Ievlev, V.M., Kannykin, S.V., Il’inova, T.N., Zabolotnyi, V.T., Korneev, V.P., Anosova, M.O., and Baldokhin, Yu.V., Nanocrystallization and change in the properties of an Fe80.2P17.1Mo2.7 amorphous alloy during heat or photon treatment, Russ. Metall. (Engl. Transl.), 2014, no. 11, pp. 888–894.

    Article  Google Scholar 

  26. Darinskiy, B.M. and Yudin, L.Yu., Mechanism of the enhancement of amorphous alloy crystallization under illumination, Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 9, pp. 1299–1303.

    Article  Google Scholar 

  27. Petricek, V., Dusek, M., and Palatinus, L., Crystallographic computing system JANA2006: general features, Z. Kristallogr., 2014, vol. 229, no. 5, pp. 345–352.

    CAS  Google Scholar 

  28. Huang, S., Structure and Structure Analysis of Amorphous Materials, Oxford: Clarendon, 1984, p.48.

    Google Scholar 

  29. Wojdir, M., Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr., 2010, vol. 43, pp. 1126–1128.

    Article  Google Scholar 

  30. Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    Article  CAS  Google Scholar 

  31. Skryshevskii, A.F., Strukturnyi analiz zhidkostei i amorfnykh tel (Structural Analysis of Liquids and Amorphous Materials), Moscow: Vysshaya Shkola, 1980.

    Google Scholar 

  32. Schuh, C.A., Lund, A.C., and Nieh, T.G., New regime of homogeneous flow in the deformation map of metallic glasses, Acta Mater., 2004, vol. 52, pp. 5879–5891.

    Article  CAS  Google Scholar 

  33. Golovin, Yu.I., Nanoindentirovanie i ego vozmozhnosti (Nanoindentation and Its Potentialities), Moscow: Mashinostroenie, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kannykin.

Additional information

Original Russian Text © V.M. Ievlev, S.V. Kannykin, T.N. Il’inova, A.S. Baikin, T. Daiyub, V.V. Vavilova, A.N. Kosyreva, D.V. Serikov, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 10, pp. 1038–1047.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ievlev, V.M., Kannykin, S.V., Il’inova, T.N. et al. Lamp processing- and heat treatment-induced structural transformations of an amorphous Al85Ni10La5 alloy: Hardness and local plasticity. Inorg Mater 53, 1013–1023 (2017). https://doi.org/10.1134/S0020168517100107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517100107

Keywords

Navigation