Skip to main content
Log in

Preparation of magnesium aluminate spinel by self-propagating high-temperature synthesis metallurgy methods

  • Published:
Inorganic Materials Aims and scope

Abstract

Experimental data are presented on the high-temperature synthesis of cast inorganic materials in the MgO–Al2O3 system. Experiments were carried out in multipurpose self-propagating high-temperature synthesis (SHS) reactors at an argon pressure p = 5 MPa. The starting mixtures used in the experiments consisted of molybdenum(VI) and magnesium(II) oxides and aluminum. It has been shown that, varying synthesis parameters, one can control the phase composition and microstructure of the final oxide products. We have optimized synthesis conditions for the preparation of single-phase magnesium aluminate spinel, MgAl2O4. The SHS products have been characterized by X-ray diffraction and local microstructural analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sokol, V.A., Rokhlenko, D.A., et al., Magnesium aluminate spinel for transparent ceramics, Izv. Akad. Nauk SSSR, Neorg. Mater., 1981, vol. 17, no. 5, pp. 896–901.

    CAS  Google Scholar 

  2. Li Ji-Guang, Ikegami, T., Lee, J.-H., Mory, T., and Yajima, Y., A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder, Ceram. Int., 2001, vol. 27, pp. 481–489.

    Article  CAS  Google Scholar 

  3. Shiono, T., Shiono, K., Miyamoto, K., and Pezzotti, G., Synthesis and characterization of MgAl2O4 spinels precursor from a heterogeneous alkoxide solution containing fine MgO powder, J. Am. Ceram. Soc., 2000, vol. 83, no. 1, pp. 235–237.

    Article  CAS  Google Scholar 

  4. Li Ji-Guang, Ikegami, T., Lee, J.-H., and Mory, T., Fabrication of translucent magnesium aluminum spinel ceramics, J. Am. Ceram. Soc., 2000, vol. 83, no. 11, pp. 2866–2868.

    Article  CAS  Google Scholar 

  5. Zinkle, S.J., Matzke, H., and Skuratov, V.A., Microstructure of swift heavy ion irradiated MgAl2O4 spinel, Mater. Res. Soc. Symp. Proc., 1999, vol. 540, pp. 299–304.

    Article  CAS  Google Scholar 

  6. Ishimaru, M., Hirotsu, Y., Afanasyev-Charkin, I.V., and Sickafus, K.E., Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel, J. Phys., Condens. Matter., 2002, vol. 14, pp. 1237–1247.

    Article  CAS  Google Scholar 

  7. Gorskii, V.V., Inert-matrix nuclear fuel, Atom. Tekh. Rubezhom, 2000, no. 10, pp. 3–6.

    Google Scholar 

  8. Oversby, V.M. and Ringwood, A.E., Leaching studies on SYNROC at 95°C and 200°C, Radioactive Waste Manag., 1982, vol. 2, pp. 305–319.

    Google Scholar 

  9. Domanski, D., Urretavizcaya, G., Castro, F.J., and Gennari, F.C., Mechanochemical synthesis of magnesium aluminate spinel powder at room temperature, J. Am. Ceram. Soc., 2004, vol. 87, pp. 2020–2024.

    Article  CAS  Google Scholar 

  10. Tomilov, N.P. and Devyatkina, E.T., MgAl2O4 synthesis from coprecipitated hydroxides, Izv. Akad. Nauk SSSR, Neorg. Mater., 1990, vol. 26, no. 12, pp. 2556–2560.

    CAS  Google Scholar 

  11. Pati, R.K. and Pramanik Panchanan, Low-temperature chemical synthesis of nanocrystalline MgAl2O4 spinel powder, J. Am. Ceram. Soc., 2000, vol. 83, pp. 1822–1824.

    Article  CAS  Google Scholar 

  12. Ledovskaya, E.G., Gabelkov, S.V., Litvinenko, L.M., Logvinkov, D.S., et al., Low-temperature synthesis of magnesium aluminate spinel, Vopr. At. Nauki Tekh., Ser.: Vakuum, Chistye Mater., Sverkhprovodn., 2006, no. 1, pp. 160–162.

    Google Scholar 

  13. Merzhanov, A.G., SHS on the pathway to industrialization, Int. J. Self-Propag. High-Temp. Synth., 2001, vol. 10, no. 2, pp. 237–248.

    CAS  Google Scholar 

  14. Yukhvid, V.I., High-temperature liquid-phase SHS processes: new trends and task objectives, Izv. Vyssh. Uchebn. Zaved, Tsvet. Metall., 2006, no. 5, pp. 62–78.

    Google Scholar 

  15. Tarasov, A.G., Gorshkov, V.A., Yukhvid, V.I., and Sachrova, N.V., Self-propagating high-temperature synthesis of oxide solid solutions Al2O3/Cr2O3/Fe2O3, Int. J. Self-Propag. High-Temp. Synth., 2005, vol. 14, no. 2, pp. 123–130.

    Google Scholar 

  16. Tarasov, A.G., Gorshkov, V.A., and Yukhvid, V.I., Phase composition and microstructure of Al2O3–Cr2O3 solid solutions prepared by self-propagating high-temperature synthesis, Inorg. Mater., 2007, vol. 43, no. 7, pp. 724–728.

    Article  CAS  Google Scholar 

  17. Tarasov, A.G., Gorshkov, V.A., and Yukhvid, V.I., Auto-wave synthesis of cast aluminum oxynitride with a high nitrogen content, Khim. Fiz., 2010, vol. 29, no. 4, pp. 51–55.

    Google Scholar 

  18. Shiryaev, A., Thermodynamics of SHS processes: an advanced approach, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no. 4, pp. 351–362.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gorshkov.

Additional information

Original Russian Text © V.A. Gorshkov, P.A. Miloserdov, V.I. Yukhvid, N.V. Sachkova, I.D. Kovalev, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 10, pp. 1070–1075.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, V.A., Miloserdov, P.A., Yukhvid, V.I. et al. Preparation of magnesium aluminate spinel by self-propagating high-temperature synthesis metallurgy methods. Inorg Mater 53, 1046–1052 (2017). https://doi.org/10.1134/S0020168517100090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517100090

Keywords

Navigation