Skip to main content
Log in

Formation of zirconium diboride nanoparticles as a result of reaction between zirconium tetrachloride and sodium borohydride

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied reaction between ZrCl4 and NaBH4 at temperatures between 300 and 725°C. The results demonstrate that single-phase zirconium diboride nanoparticles are formed starting at 575°C. According to electron microscopy data, the ZrB2 powder obtained at 575 and 725°C consists of variously shaped particles, some of which are almost spherical, ranging in diameter from ~10 to 20 and from 25 to 35 nm, respectively. These values agree with the equivalent particle diameters evaluated from the measured specific surface area of ZrB2, ~14 and ~32 nm, respectively, and with the crystallite size extracted from X-ray diffraction data: D hkl ~ 13 and 28 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Chelyabinsk: Metallurgiya, 1991.

    Google Scholar 

  2. Andrievski, R.A. and Khatchoyan, A.V., Nanomaterials in Extreme Environments, Fundamentals and Applications, New York: Springer, 2016.

    Book  Google Scholar 

  3. Andrievskii, R.A., Nanostructured titanium, zirconium, and hafnium diborides: synthesis, properties, size effects, and stability, Usp. Khim., 2015, vol. 84, no. 5, pp. 540–554.

    Article  Google Scholar 

  4. Jensen, J.A., Gozum, J.E., Pollina, D.M., and Girolami, G.S., Titanium, zirconium and hafnium tetrahydroborates as “tailored” CVD precursors for metal diboride thin films, J. Am. Chem. Soc., 1988, vol. 110, no. 5, pp. 1643–1644.

    Article  CAS  Google Scholar 

  5. Rice, G.W. and Woodin, R.L., Zirconium borohydride as a zirconium boride precursor, J. Am. Chem. Soc., 1988, vol. 71, no. 4, pp. 181–183.

    Google Scholar 

  6. Wayda, A.L., Schneemeyer, L.F., and Opila, R.L., A low-temperature film deposition of zirconium and hafnium borides for the borohydrides, M(BH4)4, Appl. Phys. Lett., 1988, vol. 53, no. 5, pp. 361–363.

    Article  CAS  Google Scholar 

  7. Andrievski, R.A., Kravchenko, S.E., and Shilkin, S.P., Some properties of ultrafine zirconium boride powders and films, Jpn. J. Appl. Phys., 1994, vol. 10, pp. 198–199.

    CAS  Google Scholar 

  8. Kravchenko, S.E., Torbov, V.I., and Shilkin, S.P., Nanosized zirconium diboride: Synthesis and properties, Russ. J. Inorg. Chem., 2011, vol. 56, no. 4, pp. 506–509.

    Article  CAS  Google Scholar 

  9. Reid, W.E., Bish, M.I., and Brenner, A., Electrodeposition of metals from organic solutions. III. Preparation and electrolysis of titanium and zirconium compounds in nonaqueus media, J. Electrochem. Soc., 1957, vol. 104, pp. 21–29.

    Article  CAS  Google Scholar 

  10. Hong Zhao, Yu He, and Zongzhe Jin, Preparation of zirconium boride powder, J. Am. Ceram. Soc., 1995, vol. 78, no. 9, pp. 2534–2536.

    Article  Google Scholar 

  11. Millet, P. and Hwang, T., Preparation of TiB2 and ZrB2. Influence of a mechanochemical treatment on the borothermic reduction of titania and zirconia, J. Mater. Sci., 1996, vol. 31, pp. 351–355.

    Article  CAS  Google Scholar 

  12. Berthon, S. and Male, G., Synthese du diborure de zirconium par cvd a basse temperature et basse pression. caracterisation des depots, Ann. Chim., 1995, vol. 20, no. 1, pp. 13–24.

    CAS  Google Scholar 

  13. Avakumov, E.G, Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Techniques for the Activation of Chemical Processes), Novosibirsk: Nauka, 1989.

    Google Scholar 

  14. Khasanov, O.L., Shulepov, I.A., Polisadova, V.V., Kachaev, A.A., Dvilis, E.S., and Bokbaeva, Z.G., Auger electron spectroscopy of mechanically activated zirconium diboride powders, Izv. Tomsk. Politekh. Univ., 2011, vol. 318, no. 2, pp. 131–136.

    Google Scholar 

  15. Kuznetsov, S.A., Glagolevskaya, A.L., Belyaevskii, A.T., Devyatkin, S.V., and Kaptai, D., High-temperature electrochemical synthesis of zirconium diboride powders from chloride–fluoride melts, Russ. J. Appl. Chem., 1997, vol. 70, no. 10, pp. 1564–1567.

    Google Scholar 

  16. Shapoval, V.I., Malyshev, V.V., Novoselova, I.A., and Kushkhov, Kh.B., Current issues in the high-temperature electrochemical synthesis of Group IV–VI transition metal compounds, Usp. Khim., 1995, vol. 64, no. 2, pp. 133–141.

    Article  CAS  Google Scholar 

  17. Volkova, L.S., Burlakova, A.G., Kravchenko, S.E., and Shilkin, S.P., Preparation of zirconium diboride nanopowders in a sodium tetraborate ionic melt, Inorg. Mater., 2013, vol. 49, no. 12, pp. 1187–1189.

    Article  CAS  Google Scholar 

  18. Kravchenko, S.E., Burlakova, A.G., Korobov, I.I., Kalinnikov, G.V., Domashnev, I.A., Shilkin, S.P., and Andrievskii, R.A., Synthesis of nanosized group IV borides in ionic melts of anhydrous sodium tetraborate, Russ. J. Inorg. Chem., 2016, vol. 61, no. 4, pp. 429–433.

    Article  CAS  Google Scholar 

  19. Kravchenko, S.E., Burlakova, A.G., Shul’ga, Yu.M., Korobov, I.I., Domashnev, I.A., Dremova, N.N., Kalinnikov, G.V., Shilkin, S.P., and Andrievskii, R.A., Special features of preparation of nanosized hafnium diboride of different dispersity, Russ. J. Gen. Chem., 2015, vol. 85, no. 5, pp. 1019–1024.

    Article  CAS  Google Scholar 

  20. Luyang Chen, Yunle Gu, Zeheng Yang, Liang Shi, Jianhua Ma, and Yitai Qian, Preparation and some properties of nanocrystalline ZrB2 powders, Scr. Mater., 2004, vol. 50, pp. 959–961.

    Article  CAS  Google Scholar 

  21. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.

  22. Aleshin, V.G., Kharlamov, A.N., and Chudinov, M.G., Surface condition of refractory compounds studied by X-ray photoelectron spectroscopy, Izv. Akad. Nauk SSSR, Neorg. Mater., 1979, vol. 15, no. 4, pp. 672–676.

    CAS  Google Scholar 

  23. Kaufmann, R., Klewe-Nebenius, H., Moers, H., Pfenni, G., Jenett, H., and Ache, H.J., XPS studies of the thermal behaviour of passivated zircaloy-4 surfaces, Surf. Interface Anal., 1988, vol. 11, pp. 502–509.

    Article  CAS  Google Scholar 

  24. Ong, C.W., Huang, H., Zheng, B., Kwok, R.W.M., Hui, Y.Y., and Lau, W.M., X-ray photoemission spectroscopy of nonmetallic materials: electronic structures of boron and BxOy, J. Appl. Phys., 2004, vol. 95, no. 7, pp. 3527–3534.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Shilkin.

Additional information

Original Russian Text © S.E. Kravchenko, A.G. Burlakova, I.A. Domashnev, S.E. Nadkhina, N.N. Dremova, A.A. Vinokurov, S.P. Shilkin, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 8, pp. 817–821.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, S.E., Burlakova, A.G., Domashnev, I.A. et al. Formation of zirconium diboride nanoparticles as a result of reaction between zirconium tetrachloride and sodium borohydride. Inorg Mater 53, 804–808 (2017). https://doi.org/10.1134/S002016851708009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851708009X

Keywords

Navigation