Skip to main content
Log in

Compositions of gismondine, cymrite, anorthite, and celsian solid solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents a three-dimensional geometric analysis of the homogeneity regions of gismondine, cymrite, anorthite, and celsian solid solutions with the use of two composition tetrahedra: AO–BO0.5–AlO1.5–SiO2 and AO–AlO1.5–SiO2–H2O (where A = alkaline-earth element and B = alkali element). The main general aspects of the extension of the homogeneity regions are elucidated. The position of the homogeneity regions in the composition tetrahedra suggests that increasing the percentage of SiO2 should lead to a gismondine–cowlesite phase transition and that a few phase transitions should be expected in the course of gismondine dehydration, which will lead to the formation of a solid solution with the anorthite structure after all of the water will be removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gismondi, G.G., Osservazioni sopra alcuni fossili particolari de' contorni di Roma, G. Enciclopedico Napoli, 1817, vol. 11, n. 2, pp. 3–15.

    Google Scholar 

  2. Von Leonard, K.C., Die Zeagonite ein neues Mineral vom Capo do Bove bei Rom, Taschenbuch Gesammte Mineral. Hinsicht Meuesten Entdeckungen, 1817, vol. 11, pp. 164–168.

    Google Scholar 

  3. Coombs, D.S., Alberti, A., Armbruster, T., et al., Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Minerals Names, Mineral. Mag., 1998, vol. 62, pp. 533–571.

    Article  CAS  Google Scholar 

  4. Rose, G., Über den feldspat, albit, labradorit und anorthit, Ann. Phys. Chem., 1823, vol. 73/Nf-43, pp. 175–208.

    Google Scholar 

  5. Deer, W.A., Howie, R.A., and Zussman, J., Rock-Forming Minerals, vol. 4: Framework Silicates, New York: Wiley, 1962–1963.

    Google Scholar 

  6. Ivanov, A.V., Badyukov, D.D., and Kononkova, N.N., Kaidun meteorite: a fragment of crystalline rock from a new parent body, Geochem. Int., 2010, no. 9, pp. 862–870.

    Article  Google Scholar 

  7. Milam, K.A., McSween, H.Y., Jr., Mocrsch, J., et al., Distribution and variation of plagioclase compositions on Mars, J. Geophys. Res., 2010, vol. 115, paper E09004.

    Google Scholar 

  8. Smith, W.C., Bannister, F.A., and Hey, M.H., Cymrite, a new barium mineral from the Benallt manganese mine, Rhiw, Carnarvonshire, Mineral. Mag., 1949, vol. 28, pp. 676–681.

    Article  CAS  Google Scholar 

  9. Runnelis, D.D., Cymrite in a copper deposit, Brooks Range, Alaska, Am. Mineral., 1964, vol. 49, pp. 158–165.

    Google Scholar 

  10. Kashaev, A.A., On the crystal structure of cymrite, Dokl. Akad. Nauk SSSR, 1966, vol. 169, pp. 201–203.

    CAS  Google Scholar 

  11. Essene, E.J., An occurrence of cymrite in the Franciscan formation, California, Am. Mineral., 1967, vol. 52, pp. 1885–1890.

    CAS  Google Scholar 

  12. Drits, V.A., Kashaev, A.A., and Sokolova, G.V., Crystal structure of cymrite, Kristallografiya, 1975, vol. 20, pp. 280–286.

    CAS  Google Scholar 

  13. Bolotina, N.B., Rastsvetaeva, R.K., and Kashaev, A.A., Refinement of the twinned structure of cymrite from the Ruby Creek deposit (Alaska), Crystallogr. Rep., 2010, vol. 55, no. 4, pp. 569–574.

    Article  CAS  Google Scholar 

  14. Bolotina, N.B., Rastsvetaeva, R.K., Andrianov, V.I., et al., Structure refinement of modulated crystals: cymrite structure, Kristallografiya, 1991, vol. 36, pp. 361–368.

    CAS  Google Scholar 

  15. Moro, M.C., Cembranos, M.L., and Fernendez, A., Celsian, (Ba,K)-feldspar and cymrite from Sedex barite deposits of Zamora, Spain, Can. Mineral., 2001, vol. 39, pp. 1039–1051.

    Article  CAS  Google Scholar 

  16. Kol’tsova, T.N., CaAl2Si2O8–A2Al2Si2O8–H2O (A = Na, K) zeolites, Inorg. Mater., 2010, vol. 46, no. 8, pp. 870–877.

    Article  Google Scholar 

  17. Fischer, K., The crystal structure determination of the zeolite gismondite. CaAl2Si2O8 · 4H2O, Am. Mineral., 1963, vol. 48, pp. 664–672.

    CAS  Google Scholar 

  18. Ogorodova, L.P., Mel’chakova, L.V., Kiseleva, I.A., et al., Thermodynamic properties of natural zeolites of the gismondine–harronite group, Russ. J. Phys. Chem. A, 2003, vol. 77, no. 9, pp. 1543–1545.

    Google Scholar 

  19. Ori, S., Quartieri, S., Vezzalini, G., et al., Pressureinduced over hydration and water ordering in gismondine: a synchrotron powder diffraction study, Am. Mineral., 2008, vol. 93, pp. 1393–1403.

    Article  CAS  Google Scholar 

  20. Vezzalini, G. and Oberti, R., The crystal chemistry of gismondines: the non-existence of K-rich gismondines, Bull. Mineral., 1984, vol. 107, pp. 805–812.

    CAS  Google Scholar 

  21. Walker, G.P.L., Low-potash gismondine from Ireland and Iceland, Mineral. Mag., 1962, vol. 33, pp. 187–201.

    Article  CAS  Google Scholar 

  22. Zambonini, F., Kurzer Beitrag zur chemischen Kentniss einiger Zeolithe der Umgegend Roms, N. J. Miner. Geol. Pal., 1902, vol. 2, pp. 63–96.

    Google Scholar 

  23. Artioli, G., Rinaldi, R., Kvick, A., et al., Neutron diffraction structure refinement of the zeolite gismondine at 15 K, Zeolites, 1986, vol. 6, no. 5, pp. 361–366.

    Article  CAS  Google Scholar 

  24. Vezzalini, G., Quartieri, S., and Alberti, A., Structural modifications induced by dehydration in the zeolite gismondine, Zeolites, 1993, vol. 13, pp. 34–42.

    Article  CAS  Google Scholar 

  25. Caglioti, V., Richerche su alcune zeolite delle leucite dei dintorni di Roma; la gismondite di Capo di Bove e la pseudophillipsite di Acquacetosa, Rend. Accad. Sci. Fis. Mat. Napoli, Ser. 3, 1927, vol. 33, pp. 156–163.

    CAS  Google Scholar 

  26. Van Reeuwijk, L.P., The dehydration of gismondite, Am. Mineral., 1971, vol. 56, pp. 1655–1659.

    Google Scholar 

  27. Cortesogno, L., Lucchetti, G., and Penco, A.M., Associazioni a zeolite nel “Gruppo di Voltri”: caratteristiche mineralogiche e significato genetico, Rend. Soc. Italiana Mineral. Petrol., 1975, vol. 31, pp. 673–710.

    CAS  Google Scholar 

  28. Wadoski-Romeijn, E. and Armbruster, T., Topotactic transformation and dehydration of the zeolite gismondine to a novel Ca feldspar structure, Am. Mineral., 2013, vol. 98, pp. 1988–1997.

    Article  CAS  Google Scholar 

  29. Iijima, A. and Harada, K., Authigenic zeolites in zeolitic palagonite tuffs on Oahu, Hawaii, Am. Mineral., 1969, vol. 54, pp. 182–197.

    CAS  Google Scholar 

  30. Hintze, C., Hanbuch der Mineralogie, vol. 2: Silicate und Titanate, Leipzig: Von Veit, 1897.

    Google Scholar 

  31. Wainwright, J.E. and Starkey, J., A refinement of the structure of anorthite, Z. Kristallogr., 1971, vol. 133, pp. 75–84.

    Article  CAS  Google Scholar 

  32. Angel, R.J., High-pressure structure of anorthite, Am. Mineral., 1988, vol. 73, pp. 1114–1119.

    CAS  Google Scholar 

  33. Angel, R.J., Carpenter, M.A., and Finger, L.W., Structural variation associated with compositional variation and order–disorder behavior in anorthite-rich feldspars, Am. Mineral., 1990, vol. 75, pp. 150–162.

    CAS  Google Scholar 

  34. Smythe, J.A., Minerals of the North Country, Silicates, Newcastle-upon-Tyne: Vasculum, 1924, vol. 10, pp. 66–79.

    CAS  Google Scholar 

  35. Smith, J.R. and Yoder, H.S., Jr., Variations in X-ray powder diffraction patterns of plagioclase feldspars, Am. Mineral., 1956, vol. 41, pp. 632–647.

    CAS  Google Scholar 

  36. Subramaniam, A.P., Mineralogy and petrology of the Sittampundi Complex, Salem district, Madras state, India, Bull. Geol. Soc. Am., 1956, vol. 67, pp. 317–389.

    Article  CAS  Google Scholar 

  37. Rusin, A.I., Valizer, P.M., Krasnobaev, A.A., et al., The nature of garnet–anorthite–clinopyroxene–amphibole rocks from the Ilmenogorsky complex (Southern Urals), Litosfera, 2012, no. 1, pp. 91–109.

    Google Scholar 

  38. Kracek, F.C. and Neuvonen, K.J., Thermochemistry of the plagioclase and alkali feldspars, Am. J. Sci., 1952, Bowen vol., pp. 293–342.

    Google Scholar 

  39. Miller, F.S., Anorthite from California, Am. Mineral., 1935, vol. 20, pp. 139–146.

    CAS  Google Scholar 

  40. Tsuboi, S., Petrological notes (1)–(10), Jpn. J. Geol. Geogr., 1935, vol. 12, pp. 110–122.

    Google Scholar 

  41. Takubo, J., Mem. Fac. Sci. Kyoto Univ., 1941, vol. 16, p. 121.

    Google Scholar 

  42. Segnit, E.R., Barium-feldspars from Broken Hill, New South Wales, Mineral. Mag., 1946, vol. 27, pp. 166–173.

    Article  CAS  Google Scholar 

  43. Newnham, R.E. and Megaw, H.D., The crystal structure of celsian (barium feldspar), Acta Crystallogr., 1960, vol. 13, pp. 303–312.

    Article  CAS  Google Scholar 

  44. Shi, G., Jiang, N., Wang, Y., et al., Ba minerals in clinopyroxene rocks from the Myanmar Jadeitite area: implications for Ba recycling in subduction zones, Eur. J. Mineral., 2010, vol. 22, pp. 199–214.

    Article  CAS  Google Scholar 

  45. Vermaas, F.H.S., A new occurrence of barium-feldspar at Otjosundu, South-West Africa, and an X-ray method for determining the composition of hyalophane, Am. Mineral., 1953, vol. 38, pp. 845–857.

    CAS  Google Scholar 

  46. Schaller, W.T., The properties and associated minerals of gillespite, Am. Mineral., 1929, vol. 14, pp. 319–322.

    CAS  Google Scholar 

  47. Tasáryova, Z., Frýda, J., Janoušek, V., et al., Slawsonite–celsian–hyalophane assemblage from a Picrite Sill (Prague basin, Czech Republic), Am. Mineral., 2014, vol. 99, pp. 2272–2279.

    Article  Google Scholar 

  48. Griffen, D.T. and Ribbe, P.H., Refinement of the crystal structure of celsian, Am. Mineral., 1976, vol. 61, pp. 414–418.

    CAS  Google Scholar 

  49. Sorokhtina, N.V., Chukanov, N.V., Voloshin, A.V., et al., Cymrite—an indicator of high barium activity in the formation of hydrothermalites associated with carbonatites from the Kola Peninsula, Zap. Ross. Mineral. O–va., 2007, vol. 136, no. 4, pp. 97–109.

    CAS  Google Scholar 

  50. Carron, M.K., Mrose, M.E., and Reiser, A.N., New data on cymrite, a hydrated silicate of barium and aluminum, Geol. Soc. Am., Spec. Pap., 1964, vol. 82, pp. 26–29.

    Google Scholar 

  51. Szakáll, S., Fenér, B., and Vezzalini, G., Occurrence of cowlesite in andesite at Pilisszentlászlo, Pilis Mts., Hungary, Acta Mineral.–Petrograph., Abstract Ser. 5, 2006, p. 113.

    Google Scholar 

  52. Wise, W.S. and Tschernich, R.W., Cowlesite, a new Cazeolite, Am. Mineral., 1975, vol. 60, pp. 951–956.

    CAS  Google Scholar 

  53. Ståhl, K. and Hanson, J., Real-time X-ray synchrotron powder diffraction studies of dehydration processes in scolecite and mesolite, J. Appl. Crystallogr., 1994, vol. 27, pp. 543–550.

    Article  Google Scholar 

  54. Mazzi, F., Galli, E., and Gottardi, G., Crystal structure refinement of two tetragonal edingtonites, Neues Jahrb. Mineral., Monatsh, 1984, pp. 373–382.

    Google Scholar 

  55. Galli, E., Crystal structure refinement of edingtonite, Acta Crystallogr. B: Struct. Crystallogr. Cryst. Chem., 1976, vol. 32, pp. 1623–1627.

    Article  Google Scholar 

  56. Peacor, D.R., Dunn, P.J., Simmons, W.B., et al., Willhendersonite, a new zeolite isostructural with chabazite, Am. Mineral., 1984, vol. 69, pp. 186–189.

    CAS  Google Scholar 

  57. Tillmanns, E., Fischer, R.X., and Baur, W.H., Chabazite- type framework in the new zeolite willhendersonite, KCaAl3Si3O12 · 5H2O, Neues Jahrb. Mineral., Monatsh., 1984, pp. 547–558.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Kol’tsova.

Additional information

Original Russian Text © T.N. Kol’tsova, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 7, pp. 751–761.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kol’tsova, T.N. Compositions of gismondine, cymrite, anorthite, and celsian solid solutions. Inorg Mater 53, 741–751 (2017). https://doi.org/10.1134/S0020168517070123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517070123

Keywords

Navigation