Skip to main content
Log in

Phase formation, microstructure, and ionic conductivity of (La,Sr)(Ga,Ge,Mg)O3–d ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

We have prepared ceramic (La0.8Sr0.2){[Ga0.8–x (Ge0.5Mg0.5) x ]Mg0.2}O3–d (LSGGM) (x = 0, 0.1, 0.2, 0.4, 0.6, 0.8) samples by solid-state reactions and studied their phase composition, structure, microstructure, and electrical conductivity. Phase-pure solid solutions have been obtained upon substitution of germanium and magnesium cations for up to 20 at % of the gallium cations. The modified samples have been shown to have high density, optimal microstructure, densely packed grains, and high electrical conductivity at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishihara, T., Honda, M., Shibayama, T., Minami, H., Nishiguchi, H., and Takita, Y., Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor, J. Electrochem. Soc., 1998, vol. 145, pp. 3177–3183.

    Article  CAS  Google Scholar 

  2. Ishihara, T., Matsuda, H., and Takita, Y., Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor, J. Am. Chem. Soc., 1994, vol. 116, pp. 3801–3803.

    Article  CAS  Google Scholar 

  3. Badwal, S.P.S., Giddey, S., Munnings, C., and Kulkarni, A., Review of progress in high temperature solid oxide fuel cells, J. Australian Ceram. Soc., 2014, vol. 50, pp. 23–37.

    CAS  Google Scholar 

  4. Huang, K., Tichy, R.S., and Goodenough, J.B., Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: II, ac impedance spectroscopy, J. Am. Ceram. Soc., 1998, vol. 81, pp. 2576–2580.

    Article  CAS  Google Scholar 

  5. Biswal, R. and Biswas, K., Novel way of phase stability of LSGM and its conductivity enhancement, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 509–518.

    Article  CAS  Google Scholar 

  6. Islam, M.S. and Davies, R.A., Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite, J. Mater. Chem., 2004, vol. 14, pp. 86–93.

    Article  CAS  Google Scholar 

  7. Ishihara, T., Kilner, J.A., Honda, M., Sakai, N., Yokokawa, H., and Takita, Y., Oxygen surface exchange and diffusion in LaGaO3 based perovskite type oxides, Solid State Ionics, 1998, vols. 113–115, pp. 593–600.

    Google Scholar 

  8. Majewski, P., Rozumek, M., Tas, C.A., and Aldinger, F., Processing of (La,Sr)(Ga,Mg)O3 solid electrolyte, J. Electroceram., 2002, vol. 8, pp. 65–73.

    Article  CAS  Google Scholar 

  9. Datta, P., Majewski, P., and Aldinger, F., Synthesis and microstructural characterization of Sr- and Mg-substituted LaGaO3 solid electrolyte, Mater. Chem. Phys., 2007, vol. 102, pp. 240–244.

    Article  CAS  Google Scholar 

  10. Kuguoglu, R.S., Altincekic, T.G., Ozdemir, H., and Oksuzomer, M., Preparation and characterization of La0.8Sr0.2Ga0.83Mg0.17O3 electrolyte by polyol method for solid oxide fuel cells, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 16 733–16 738.

    Article  Google Scholar 

  11. Cong, L., He, T., Ji, Y., Guan, P., Huang, Y., and Su, W., Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3 by glycine-nitrate combustion method, J. Alloys Compd., 2003, vol. 348, pp. 325–331.

    Article  CAS  Google Scholar 

  12. Lee, D., Han, J.-H., Chun, Y., Song, R.-H., and Shin, D.R., Preparation and characterization of strontium and magnesium doped lanthanum gallates as the electrolyte for IT-SOFC, J. Power Sources, 2007, vol. 166, pp. 35–40.

    Article  CAS  Google Scholar 

  13. Chen, T.-Y. and Fung, K.-Z., Synthesis and densification of oxygen-conducting La0.8Sr0.2Ga0.8Mg0.2O2.8 nano powder prepared from a low temperature hydrothermal urea precipitation process, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 803–810.

    Article  CAS  Google Scholar 

  14. Biswal, R.C. and Biswas, K., Synthesis and characterization of Sr2+ and Mg2+ doped LaGaO3 by co-precipitation method followed by hydrothermal treatment for solid oxide fuel cell applications, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 3053–3058.

    Article  CAS  Google Scholar 

  15. Cho, P.-S., Park, S.Y., Cho, Y.H., Kim, S.-J., Kang, Y.C., and Mori, T., Preparation of LSGM powders for low temperature sintering, Solid State Ionics, 2009, vol. 180, pp. 788–791.

    Article  CAS  Google Scholar 

  16. Shi, M., Xu, Y., Liu, A., Liu, N., Wang, C., and Majewski, P., Synthesis and characterization of Sr- and Mg-doped lanthanum gallate electrolyte materials prepared via the Pechini method, Mater. Chem. Phys., 2009, vol. 114, pp. 43–46.

    Article  CAS  Google Scholar 

  17. Polini, R., Pamio, A., and Traversa, E., Effect of synthetic route on sintering behaviour, phase purity and conductivity of Sr- and Mg-doped LaGaO3 perovskites, J. Eur. Ceram. Soc., 2004, vol. 24, pp. 1365–1370.

    Article  CAS  Google Scholar 

  18. Tas, A.C., Majewski, P.J., and Aldinger, F., Chemical preparation of pure and strontium- and/or magnesiumdoped lanthanum gallate powders, J. Am. Ceram. Soc., 2000, vol. 83, pp. 2954–2960.

    Article  CAS  Google Scholar 

  19. Rambabu, B., Ghosh, S., Zhao, W., and Jena, H., Innovative processing of dense LSGM electrolytes for ITSOFC’s, J. Power Sources, 2006, vol. 159, pp. 21–28.

    Article  CAS  Google Scholar 

  20. Datta, P., Doped LaGaO3 based solid oxide fuel cell materials and their sintering aspects: an overview, Mater. Sci. Forum, 2009, vol. 624, pp. 109–137.

    Article  CAS  Google Scholar 

  21. Ivanov, C.A., Kaleva, G.M., Aleksandrovskii, V.V., Politova, E.D., and Eriksson, S., Specific features of the structure and weight loss of aliovalent-substituted oxides based on lanthanum gallate (La,Sr)(Ga,Mg,Fe)O3–y , Crystallogr. Rep., 2006, vol. 51, no. 2, pp. 212–218.

    Article  CAS  Google Scholar 

  22. Politova, E.D., Aleksandrovskii, V.V., Kaleva, G.M., Mosunov, A.V., Suvorkin, S.V., Zaitsev, S.V., Sung, J.S., Choo, K.Y., and Kim, T.H., Mixed conducting perovskite-like ceramics on base of lanthanum gallate, Solid State Ionics, 2006, vol. 177, pp. 1779–1783.

    Article  CAS  Google Scholar 

  23. Politova, E.D., Aleksandrovskii, V.V., Zaitsev, S.V., Kaleva, G.M., Mosunov, A.V., Stefanovich, S.Yu., Avetisov, A.K., Suvorkin, S.V., Kosarev, G.V., Sukhareva, I.P., Sung, J.S., Choo, K.Y., and Kim, T.H., Oxygen permeability of mixed conducting perovskite lanthanum gallate-based ceramics, Mater. Sci. Forum, 2006, vols. 514–516, pp. 412–416.

    Article  Google Scholar 

  24. Golubko, N.V., Kaleva, G.M., Roginskaya, Yu.E., and Politova, E.D., Sol–gel synthesis of lanthanum-gallate-based ceramic coatings, Inorg. Mater., 2007, vol. 43, no. 11, pp. 1235–1240.

    Article  CAS  Google Scholar 

  25. Leonidov, I.A., Patrakeev, M.V., Bahteeva, J.A., Poholok, K.V., Filimonov, D.S., Poeppelmeier, K.R., and Kozhevnikov, V.L., Oxygen-ion and electron conductivity in Sr2(Fe1–x Gax)2O5, J. Solid State Chem., 2006, vol. 179, pp. 3045–3051.

    Article  CAS  Google Scholar 

  26. Mosunov, A.V. and Podzorova, L.I., Dielectric properties and electrical conductivity of ZrO2–CeO2 ceramics, Inorg. Mater., 2008, vol. 44, no. 7, pp. 785–790.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Kaleva.

Additional information

Original Russian Text © G.M. Kaleva, A.V. Mosunov, N.V. Sadovskaya, E.D. Politova, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 7, pp. 775–780.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleva, G.M., Mosunov, A.V., Sadovskaya, N.V. et al. Phase formation, microstructure, and ionic conductivity of (La,Sr)(Ga,Ge,Mg)O3–d ceramics. Inorg Mater 53, 764–769 (2017). https://doi.org/10.1134/S002016851707010X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851707010X

Keywords

Navigation