Skip to main content
Log in

Model for the calculation of the volume change on melting of metals

  • Published:
Inorganic Materials Aims and scope

Abstract

A phenomenological model has been proposed that allows the volume change on melting of metals to be related to the valence, thermodynamic properties, and crystallographic parameters of the solid phase. Basic to the model are ideas that a phonon “analog of the Casimir force” plays a key role in determining the metal melting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fortov, V.E., Uravneniya sostoyaniya veshchestva: ot ideal’nogo gaza do kvark-glyuonnoi plazmy (Equations of State for Matter: From Ideal Gas to Quark–Gluon Plasma), Moscow: Fizmatlit, 2013.

    Google Scholar 

  2. Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (High-Temperature Thermophysical Properties of Metals), Moscow: Metallurgiya, 1989.

    Google Scholar 

  3. Struktura i svoistva metallov i splavov. Teplovye svoistva metallov i splavov (Structure and Properties of Metals and Alloys. Thermal Properties of Metals and Alloys), Larikov, L.N. and Yurchenko, Yu.F., Eds., Kiev: Naukova Dumka, 1985.

  4. Martynov, G.A., Klassicheskaya statisticheskaya mekhanika. Teoriya zhidkostei (Classic Statistical Mechanics. Theory of Liquids), Dolgoprudnyi: Intellekt, 2011.

    Google Scholar 

  5. Ryabov, V.A., Printsipy statisticheskoi fiziki i chislennoe modelirovanie (Principles of Statistical Physics and Numerical Simulation), Dolgoprudnyi: Intellekt, 2014.

    Google Scholar 

  6. Chuvildeev, V.N. and Semenycheva, A.V., The role of the “Casimir force analogue” at the microscopic processes of crystallization and melting, Ann. Phys., 2016, vol. 373, pp. 390–398. doi 10.1016/j.aop.2016.07.010

    Article  CAS  Google Scholar 

  7. Sanditov, D.S. and Bartenev, G.M., Fizicheskie svoistva neuporyadochennykh struktur (Physical Properties of Disordered Structures), Novosibirsk: Nauka, 1982.

    Google Scholar 

  8. Fizicheskie velichiny (Physical Quantities), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

  9. Touloukian, Y.S., Kirby, R.T., Taylor, R.E., and Desai, P.D., Thermophysical Properties of Matter. The TPRC Data Series. Thermal Expansion Metallic Elements and Alloys, New York: Plenum, 1975, vol. 12.

    Google Scholar 

  10. Casimir, H.B.G., On the attraction between two perfectly conducting plates, Indagationes Math., 1948, vol. 10, pp. 261–263.

    Google Scholar 

  11. Genet, C., Lambrecht, A., and Reynaud, S., Temperature dependence of the Casimir effect between metallic mirrors, Phys. Rev. A, 2000, vol. 62, paper 012 110. doi 10.1103/PhysRevA.62.012110

    Google Scholar 

  12. Harrison, W., Electronic Structure and Properties of Solids. The Physics of the Chemical Bond, San Francisco: Freeman, 1980.

    Google Scholar 

  13. Kittel, Ch., Introduction to Solid State Physics, New York: Wiley, 1953.

    Google Scholar 

  14. Frost, H.J. and Ashby, M.F., Deformation-Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, New York: Pergamon, 1983.

    Google Scholar 

  15. Svoistva elementov (Properties of Elements), Drits, M.E., Ed., Moscow: Metallurgiya, 1985.

  16. Regel’, A.R. and Glazov, V.M., Periodicheskii zakon i fizicheskie svoistva elektronnykh rasplavov (Periodic Law and Physical Properties of Electronic Melts), Moscow: Nauka, 1978.

    Google Scholar 

  17. Sokolovskaya, E.M. and Guzei, L.S., Metallokhimiya (Metal Chemistry), Moscow: Mosk. Gos. Univ., 1986.

    Google Scholar 

  18. Tablitsy fizicheskikh velichin (Tables of Physical Quantities), Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.

  19. Frantsevich, I.N., Voronov, F.F., and Bakuta, S.A., Uprugie postoyannye i moduli uprugosti metallov i nemetallov (Elastic Constants and Elastic Moduli of Metals and Nonmetals), Kiev: Naukova Dumka, 1982.

    Google Scholar 

  20. Wray, P.J., Volume change accompanying solidification, Metall. Trans., 1974, vol. 5, no. 12, pp. 2602–2603. doi 10.1007/BF02643883

    Article  CAS  Google Scholar 

  21. Arsent’ev, P.P. and Koledov, L.A., Metallicheskie rasplavy i ikh svoistva (Metallic Melts and Their Properties), Moscow: Metallurgiya, 1976.

    Google Scholar 

  22. Metal Reference Book, Smithells, C.J., Ed., London: Butterworths, 1976.

  23. Ubbelohde, A.R., The Molten State of Matter, New York: Wiley, 1978.

    Google Scholar 

  24. Chuvil’deev, V.N., Micromechanism of self-diffusion in molten metals: part 1, Rasplavy, 1996, no. 2, pp. 9–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Semenycheva.

Additional information

Original Russian Text © V.N. Chuvil’deev, A.V. Semenycheva, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 7, pp. 781–785.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvil’deev, V.N., Semenycheva, A.V. Model for the calculation of the volume change on melting of metals. Inorg Mater 53, 770–773 (2017). https://doi.org/10.1134/S0020168517070020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517070020

Keywords

Navigation