Skip to main content
Log in

A comparative study of the electrical properties of reduced and unreduced LiTaO3 crystals

  • Published:
Inorganic Materials Aims and scope

Abstract

We have carried out a comparative study of the electrical properties of lithium tantalate (LiTaO3) crystals in a wide temperature range (300–900 K) before and after reductive treatment in H2O vapor and subsequent oxidative annealing. The results demonstrate that, in the temperature range of Li+ ion conduction (550–900 K), the activation enthalpy for ionic conduction in the reduced lithium tantalate crystal is H a = 1.37 eV, which slightly exceeds that in the initial state of the crystal (1.34 eV). In the temperature range 390–450 K, the σ(T) data for the unannealed crystal are well represented by the Arrhenius law in the presence of two carrier types, with activation energies E 1 = 1.03 eV and E 2 = 0.29 eV, characteristic of proton and electron hopping conduction, respectively. After reductive annealing, the activation energy for conduction is ~0.65 eV, characteristic of the activation energy for bipolaron conduction. After subsequent oxidative annealing of the reduced crystals in dry air, the activation energy is ~1.2 eV. It seems likely that the presence of oxygen vacancies in the reduced LiTaO3 crystal stimulates hydrogen release from the crystal during oxidative annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lines, M.E. and Glass, A.M., Principles and Application of Ferroelectrics and Related Materials, Oxford: Oxford Univ. Press, 1977.

    Google Scholar 

  2. Arizmendi, L., Photonic applications of lithium niobate crystals, Phys. Status Solidi A, 2004, vol. 201, no. 2, pp. 253–283.

    Article  CAS  Google Scholar 

  3. Volk, T.R. and Wöhlecke, M., Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Berlin: Springer, 2008.

    Google Scholar 

  4. Ferroelectric Crystals for Photonic Applications, Ferraro, P., Grilli, S., and De Natale, P., Eds., Berlin: Springer, 2009.

  5. Yatsenko, A.V., Palatnikov, M.N., Sidorov, N.V., Pritulenko, A.S., and Evdokimov, S.V., Specific features of electrical conductivity of LiTaO3 and LiNbO3 crystals in the temperature range 290–450 K, Phys. Solid State, 2015, vol. 57, no. 8, pp. 1547–1550.

    Article  CAS  Google Scholar 

  6. Yatsenko, A.V., Palatnikov, M.N., Makarova, O.V., Sidorov, N.V., and Yevdokimov, S.V., Electrical properties of LiTaO3 single crystals at 290–450 K, Ferroelectrics, 2015, vol. 477, no. 1, pp. 47–53.

    Article  CAS  Google Scholar 

  7. Palatnikov, M.N., Sandler, V.A., Yatsenko, A.V., Sidorov, N.V., Evdokimov, S.V., and Makarova, O.V., Anisotropic electrical conductivity and dielectric properties of LiTaO3 crystals in the temperature range 290–900 K, Inorg. Mater., 2015, vol. 51, no. 7, pp. 685–695. doi 10.1134/S00201685150701228.

    Article  CAS  Google Scholar 

  8. Brickeen, B. and Shanta, C., Reducing the pyroelectric effect in lithium niobate Q-switch crystals, Opt. Eng., 2010, vol. 49, paper 124201.

    Google Scholar 

  9. Bordui, P., Jundt, D., Standifer, E., Norwood, R., Sawin, R., and Galipeau, J., Chemically reduced lithium niobate single crystals: processing, properties and improved surface acoustic wave device fabrication and performance, J. Appl. Phys., 1999, vol. 85, pp. 3766–3769.

    Article  CAS  Google Scholar 

  10. Jösch, W., Munser, R., Ruppel, W., and Würfel, P., The photovoltaic effect and the charge transport in LiNbO3, Ferroelectricity, 1978, vol. 21, pp. 623–625.

    Article  Google Scholar 

  11. Bollman, W. and Stöhr, H.-J., Incorporation and mobility of OH ions in LiNbO3 crystals, Phys. Status Solidi A, 1977, vol. 39, pp. 477–484.

    Article  Google Scholar 

  12. Yatsenko, A.V., Pritulenko, A.S., Yevdokimov, S.V., Sugak, D.Yu., et al., The influence of annealing in saturated water vapor on LiNbO3 crystals optical and electrical properties, Solid State Phenom., 2015, vol. 230, pp. 233–237.

    Article  Google Scholar 

  13. Evdokimov, S.V., Pritulenko, A.S., Sapiga, A.A., and Yatsenko, A.V., An experimental setup for measuring the impedance of dielectrics at low and ultralow frequencies, Uch. Zap. Tavrichesk. Nats. Univ. im. V. I. Vernadskogo. Ser. Fiz.-Mat. Nauki, 2011, vol. 24 (63), no. 2, pp. 187–192.

    Google Scholar 

  14. Physics of Electrolytes, vol. 1: Transport Processes in Solid Electrolytes and in Electrodes, Hladik, J., Ed., London: Academic, 1972.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Palatnikov.

Additional information

Original Russian Text © M.N. Palatnikov, A.V. Yatsenko, V.A. Sandler, N.V. Sidorov, D.V. Ivanenko, O.V. Makarova, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 6, pp. 586–593.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palatnikov, M.N., Yatsenko, A.V., Sandler, V.A. et al. A comparative study of the electrical properties of reduced and unreduced LiTaO3 crystals. Inorg Mater 53, 576–582 (2017). https://doi.org/10.1134/S0020168517060152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517060152

Keywords

Navigation