Skip to main content
Log in

Melt-assisted phase transformations of A/W/Mn/SiO2 (A = Li, Na, K, Rb, Cs) composite catalysts

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper analyzes results obtained in studies of A/W/Mn/SiO2 (A = Li, Na, K, Rb, Cs) composite catalysts for the oxidative coupling of methane (OCM). Particular attention is paid to phase transformations. It is pointed out that the SiO2 matrix is an active catalytic component of the composites, rather than an inert carrier of additives, and that the heterogeneous OCM process involves melts based on alkali metal tungstates, along with polycrystalline manganese oxides. The effects of the cation ratio and synthesis method on the phase composition of the A/W/Mn/SiO2 (A = Li, Na, K, Rb, Cs) materials is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arutyunov, V.S., Okislitel’naya konversiya prirodnogo gaza (Oxidative Conversion of Natural Gas), Moscow: Krasand, 2011.

    Google Scholar 

  2. Karakaya, C. and Kee, R.J., Progress in the direct catalytic conversion of methane to fuels and chemicals, Prog. Energy Combustion Sci., 2016, vol. 55, pp. 60–97.

    Article  Google Scholar 

  3. Taifan, W. and Baltrusaitis, J., CH4 conversion to value added products: potential, limitations and extensions of a single step heterogeneous catalysis, Appl. Catal., B, 2016, vol. 198, pp. 525–547.

    Article  CAS  Google Scholar 

  4. Fleischer, V., Littlewood, P., Parishan, S., and Schomäcker, R., Chemical looping as reactor concept for the oxidative coupling of methane over a Na2WO4/Mn/SiO2 catalyst, Chem. Eng. J., 2016, vol. 306, pp. 646–654.

    Article  CAS  Google Scholar 

  5. Nipan, G.D., Buzanov, G.A., Zhizhin, K.Yu., and Kuznetsov, N.T., Phase states of Li(Na,K,Rb,Cs)/W/Mn/SiO2 composite catalysts for oxidative coupling of methane, Russ. J. Inorg. Chem., 2016, vol. 61, no. 14, pp. 1689–1707.

    Article  CAS  Google Scholar 

  6. Zavyalova, U., Holena, M., Schlögl, R., and Baerns, M., Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts, Chem. Catal. Chem., 2011, vol. 3, no. 12, pp. 1935–1947.

    CAS  Google Scholar 

  7. Li, S., Reaction chemistry of W–Mn/SiO2 catalyst for the oxidative coupling of methane, J. Nat. Gas Chem., 2003, vol. 12, no. 1, pp. 1–9.

    Google Scholar 

  8. Palermo, A., Varquez, J.P.H., Lee, A.F., Tikhov, M.S., and Lambert, R.M., Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane, J. Catal., 1998, vol. 177, no. 2, pp. 259–266.

    Article  CAS  Google Scholar 

  9. Palermo, A., Varquez, J.P.H., and Lambert, R.M., New efficient catalysts for the oxidative coupling of methane, Catal. Lett., 2000, vol. 68, nos. 3–4, pp. 191–196.

    Article  CAS  Google Scholar 

  10. Liu, H., Wang, X., Yang, D., Gao, R., Wang, Z., and Yang, J., Scale up and stability test for oxidative coupling of methane over Na2WO4–Mn/SiO2 catalyst in a 200 mL fixed-bed reactor, J. Nat. Gas Chem., 2008, vol. 17, no. 1, pp. 59–63.

    Article  Google Scholar 

  11. Dedov, A.G., Nipan, G.D., Loktev, A.S., Tyunyaev, A.A., Ketsko, V.A., Parkhomenko, K.V., and Moiseev, I.I., Oxidative coupling of methane: influence of the phase composition of silica-based catalysts, Appl. Catal., A, 2011, vol. 406, nos. 1–2, pp. 1–12.

    Article  CAS  Google Scholar 

  12. Gholipour, Z., Malekzadeh, A., Ghiasi, M., Mortazavi, Y., and Khodadadi, A., Structural flexibility under oxidative coupling of methane; main chemical role of alkali ion in [Mn + (Li, Na, K or Cs) + W]/SiO2 catalysts, Iran. J. Sci. Technol., 2012, vol. 36, no. A2, pp. 189–211.

    CAS  Google Scholar 

  13. Bozorgzadeh, H.R., Ahmadi, R., Golkar, M.M., and Khodagholi, M.R., Oxidative coupling of methane over different supported Mn/Na2WO4 catalysts, Pet. Coal, 2011, vol. 53, no. 2, pp. 84–90.

    CAS  Google Scholar 

  14. Chua, Y.T., Mohamed, A.R., and Bhatia, S., Process optimization of oxidative coupling of methane for ethylene production using response surface methodology, J. Chem. Technol. Biotechnol., 2007, vol. 82, no. 1, pp. 81–91.

    Article  Google Scholar 

  15. Chua, Y.T., Mohamed, A.R., and Bhatia, S., Oxidative coupling of methane for the production of ethylene over sodium–tungsten–manganese-supported-silica catalyst (Na–W–Mn/SiO2), Appl. Catal., A, 2008, vol. 343, nos. 1–2, pp. 142–148.

    Article  CAS  Google Scholar 

  16. Pak, S., Qiu, P., and Lunsford, J.H., Elementary reactions in the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts, J. Catal., 1998, vol. 179, no. 1, pp. 222–230.

    Article  CAS  Google Scholar 

  17. Malekzadeh, A., Khododadi, A., Abedini, M., Amini, M., Bahramian, A., and Dalai, A.K., Correlation of electrical properties and performance of OCM MOx/Na2WO4/SiO2 catalysts, Catal. Commun., 2001, vol. 2, no. 8, pp. 241–247.

    Article  CAS  Google Scholar 

  18. Ji, S., Xiao, T., Li, S., Chou, L., Zhang, B., Xu, C., Hou, R., York, A.P.E., and Green, M.L.H., Surface WO4 tetrahedron: the essence of the oxidative coupling of methane over M–W–Mn/SiO2 catalysts, J. Catal., 2003, vol. 220, no. 1, pp. 47–56.

    Article  CAS  Google Scholar 

  19. Ahari, J.S., Ahmadi, R., Mikami, H., Inazu, K., Zarrinpashne, S., Suzuki, S., and Aika, K., Application of a simple kinetic model for the oxidative coupling of methane to the design of effective catalysts, Catal. Today, 2009, vol. 145, nos. 1–2, pp. 45–54.

    Article  CAS  Google Scholar 

  20. Usachev, N.Ya., Kharlamov, V.V., Belanova, E.P., Starostina, T.S., and Krukovskii, I.M., Oxidative processing of light alkanes; state-of-the-art and prospects, Russ. J. Gen. Chem., 2009, vol. 79, no. 6, pp. 1252–1263.

    Article  CAS  Google Scholar 

  21. Koirala, R., Büchel, R., Pratsinis, S.E., and Baiker, A., Oxidative coupling of methane on flame-made Mn–Na2WO4/SiO2: influence of catalyst composition and reaction conditions, Appl. Catal., A, 2014, vol. 484, pp. 97–107.

    Article  CAS  Google Scholar 

  22. Nipan, G.D., Artukh, V.A., Yusupov, V.S., Loktev, A.S., Spesivtsev, N.A., Dedov, A.G., and Moiseev, I.I., Pressure effect on the formation of active components of a catalyst for methane oxidative coupling, Dokl. Phys. Chem., 2014, vol. 455, no. 2, pp. 60–63.

    Article  CAS  Google Scholar 

  23. Nipan, G.D., Artukh, V.A., Yusupov, V.S., Loktev, A.S., Spesivtsev, N.A., Dedov, A.G., and Moiseev, I.I., Effect of pressure on the phase composition of Li(Na)/W/Mn/SiO2 composites and their catalytic activity for oxidative coupling of methane, Inorg. Mater., 2014, vol. 50, no. 9, pp. 912–916.

    Article  CAS  Google Scholar 

  24. Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Dedov, A.G., and Moiseev, I.I., Unexpected interaction between the components of a catalyst of methane oxidative coupling, Dokl. Phys. Chem., 2013, vol. 448, no. 2, pp. 19–22.

    Article  CAS  Google Scholar 

  25. Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Gerashchenko, M.V., Dedov, A.G., and Moiseev, I.I., Specifics of phase transformations in Li/W/Mn/SiO2 composites at influence of methane–oxygen and hydrogen–air mixtures, Russ. J. Inorg. Chem., 2013, vol. 58, no. 8, pp. 887–891.

    Article  CAS  Google Scholar 

  26. Dedov, A.G., Loktev, A.S., Nipan, G.D., Dorokhov, S.N., Golikov, S.D., Spesivtsev, N.A., and Moiseev, I.I., Oxidative coupling of methane to form ethylene: effect of the preparation method on the phase composition and catalytic properties of Li–W–Mn–O–SiO2 composite materials, Pet. Chem., 2015, vol. 55, no. 2, pp. 163–168.

    Article  CAS  Google Scholar 

  27. Malekzadeh, A., Khodadadi, A., Dalai, A.K., and Abedini, M., Oxidative coupling of methane over lithium doped (Mn + W)/SiO2 catalysts, J. Nat. Gas Chem., 2007, vol. 16, no. 2, pp. 121–129.

    Article  CAS  Google Scholar 

  28. Nipan, G.D., Dedov, A.G., Loktev, A.S., Ketsko, V.A., Kol’tsova, T.N., Tyunyaev, A.A., and Moiseev, I.I., SiO2-based composites in the catalysis of methane oxidative coupling: role of phase composition, Dokl. Phys. Chem., 2008, vol. 419, no. 2, pp. 73–76.

    Article  CAS  Google Scholar 

  29. Tyunyaev, A.A., Nipan, G.D., Kol’tsova, T.N., Loktev, A.S., Ketsko, V.A., Dedov, A.G., and Moiseev, I.I., Polymorphic Mn/W/Na(K,Rb,Cs)/SiO2 catalysts for oxidative coupling of methane, Russ. J. Inorg. Chem., 2009, vol. 54, no. 5, pp. 664–667.

    Article  Google Scholar 

  30. Wang, J., Chou, L., Zhang, B., Song, H., Zhao, J., Yang, J., and Li, S., Comparative study on oxidation of methane to ethane and ethylene over Na2WO4–Mn/SiO2 catalysts prepared by different methods, J. Mol. Catal. A: Chem., 2006, vol. 245, nos. 1–2, pp. 272–277.

    Article  CAS  Google Scholar 

  31. Yildiz, M., Simon, U., Aksu, Y., Thomas, A., Schomäcker, R., and Arndt, S., Support material variation for the MnxOy–Na2O4/SiO2 catalyst, Catal. Today, 2014, vol. 228, pp. 5–14.

    Article  CAS  Google Scholar 

  32. Jiang, Z.-C., Yu, C.-J., Fang, X.-P., Li, S.-B., and Wang, H.-Li, Oxide/support interaction and surface reconstruction in the sodium tungstate (Na2WO4)/silica system, J. Phys. Chem., 1993, vol. 97, no. 49, pp. 12870–12875.

    Article  CAS  Google Scholar 

  33. Simon, U., Görke, O., Berthold, A., Arndt, S., Schomäcker, R., and Schubert, H., Fluidized bed processing of sodium tungsten manganese catalysts or the oxidative coupling of methane, Chem. Eng. J., 2011, vol. 168, no. 3, pp. 1352–1359.

    Article  CAS  Google Scholar 

  34. Salehoun, V., Khodadadi, A., Mortazavi, Y., and Talebizadeh, A., Dynamics of Mn/Na2WO4/SiO2 catalyst in oxidative coupling of methane, Chem. Eng. Sci., 2008, vol. 63, no. 20, pp. 4910–4916.

    Article  CAS  Google Scholar 

  35. Talebzadeh, A., Mortazavi, Y., and Khodadadi, A.A., Comparative study of two-zone fluidized-bed reactor and the fluidized-bed reactor for oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst, Fuel Process. Technol., 2009, vol. 90, no. 10, pp. 1319–1325.

    Article  Google Scholar 

  36. Ahari, J.S., Sadeghi, M.T., and Zarrinpashne, S.Z., Effects of operating parameters on oxidative coupling of methane over Na–W–Mn/SiO2 catalyst at elevated pressures, J. Nat. Gas Chem., 2011, vol. 20, no. 2, pp. 204–213.

    Article  CAS  Google Scholar 

  37. Ahari, J.S., Sadeghi, M.T., and Zarrinpashne, S.Z., Optimization of OCM reaction conditions over Na–W–Mn/SiO2 catalyst at elevated pressure, J. Taiwan Inst. Chem. Eng., 2011, vol. 42, no. 5, pp. 751–759.

    Article  CAS  Google Scholar 

  38. Chou, L., Cai, Y., Zhang, B., Niu, J., Ji, S., and Li, S., Oxidative coupling of methane over Na–W–Mn/SiO2 catalysts at elevated pressures oxidative coupling of methane over Na–W–Mn/SiO2 catalysts, J. Nat. Gas Chem., 2002, vol. 11, no. 3, pp. 131–136.

    CAS  Google Scholar 

  39. Ghose, R., Hwang, H.T., and Varma, A., Oxidative coupling of methane using catalysts synthesized by solution combustion method, Appl. Catal. A, 2013, vol. 452, pp. 147–154.

    Article  CAS  Google Scholar 

  40. Wang, X., Chou, L., Zhang, B., Zhao, J., Yang, J., and Li, S., Oxidative coupling of methane over Na2WO4–Mn/SiO2 catalyst prepared by sol–gel method, Nat. Gas Chem. Ind. (China), 2006, no. 2, pp. 1–5.

    CAS  Google Scholar 

  41. Tang, J., Ji, S., Wang, K., and Li, C., Preparation of M–W–Mn/SiO2/corderite monolithic catalysts and their performances for oxidative coupling of methane, Nat. Gas Chem. Ind. (China), 2009, no. 3, pp. 19–23, 26.

    Google Scholar 

  42. Lee, M.R., Park, M.-J., Jeon, W., Choi, J.-W., Suh, Y.-W., and Suh, D.J., A kinetic model of the oxidative coupling of methane over Na2WO4/Mn/SiO2, Fuel Process. Technol., 2012, vol. 96, pp. 175–182.

    Article  CAS  Google Scholar 

  43. Shahri, S.M.K. and Alavi, S.M., Kinetic studies of the oxidative coupling of methane over the Mn/Na2WO4/SiO2 catalyst, J. Nat. Gas Chem., 2009, vol. 18, no. 1, pp. 25–34.

    Article  CAS  Google Scholar 

  44. Ji, S., Xiao, T., Li, S., Chou, L., Xu, C., Hou, R., Colerman, K.S., and Green, M.L.H., The relationship between the structure and the performance of Na–W–Mn/SiO2 catalysts for the oxidative coupling of methane, Appl. Catal., A, 2002, vol. 225, nos. 1–2, pp. 271–284.

    Article  CAS  Google Scholar 

  45. Elkins, T.W. and Hagelin-Weaver, H.E., Characterization of Mn–Na2O4/SiO2 and Mn–Na2O4/MgO catalysts for the oxidative coupling of methane, Appl. Catal., A, 2015, vol. 497, pp. 96–106.

    Article  CAS  Google Scholar 

  46. Arndt, S., Otremba, T., Simon, U., Yildiz, M., Schubert, H., and Schomäcker, R., Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known?, Appl. Catal., A, 2012, vols. 425–426, pp. 53–61.

    Article  Google Scholar 

  47. Malekzadeh, A., Abedini, M., Khododadi, A., Amini, M., Mishra, H.K., and Dalai, A.K., Critical influence of Mn on low-temperature catalytic activity of Mn/Na2WO4/SiO2 catalysts for oxidative coupling of methane, Catal. Lett., 2002, vol. 84, nos. 1–2, pp. 45–51.

    Article  CAS  Google Scholar 

  48. Rodemerck, U., Ignaszewski, P., Lucas, M., and Claus, P., Parallel synthesis and fast catalytic testing of catalyst libraries for oxidation reactions, Chem. Eng. Technol., 2000, vol. 23, no. 5, pp. 413–416.

    Article  CAS  Google Scholar 

  49. Sadjadi, S., Jašo, S., Godini, H.R., Arndt, S., Wollgarten, M., Blume, R., Görke, O., Schomäcker, R., Wozny, G., and Simon, U., Feasibility study of the Mn–Na2WO4/SiO2 catalytic system for the oxidative coupling of methane in a fluidized-bed reactor, Catal. Sci. Technol., 2015, vol. 5, no. 2, pp. 942–952.

    Article  CAS  Google Scholar 

  50. Beck, B., Fleisher, V., Arndt, S., Hevia, M.H., Urakawa, A., Hugo, P., and Schomäcker, R., Oxidative coupling of methane—a complex surface/gas phase mechanism with strong impact on the reaction engineering, Catal. Today, 2014, vol. 238, pp. 212–218.

    Article  Google Scholar 

  51. Galanov, S.I., Galanov, A.I., Smirnov, M.Yu., Sidorova, O.I., and Kurina, L.N., Oxidative dimerization of methane in to ethylene on oxide manganese-containing systems, Bull. Tomsk. Politekh. Univ., 2005, vol. 308, no. 1, pp. 126–130.

    Google Scholar 

  52. Hou, S., Cao, Y., Xiong, W., Liu, H., and Kou, Y., Site requirements for the oxidative coupling of methane on SiO2-supported Mn catalysts, Ind. Eng. Chem. Res., 2006, vol. 45, no. 21, pp. 7077–7983.

    Article  CAS  Google Scholar 

  53. Hou, S., Cao, Y., Xiong, W., Liu, H., and Kou, Y., In situ study on sodium salt-modified Mn SiO2 catalysts for the oxidative coupling of methane, Chin. J. Catal., 2006, vol. 27, no. 7, pp. 553–555.

    CAS  Google Scholar 

  54. Langfeld, K., Frank, B., Strempel, V.E., Berger-Karin, C., Weinberg, G., Kondratenko, E.V., and Schomäcker, R., Comparison of oxidizing agents for the oxidative coupling of methane over state-of-the-art-catalysts, Appl. Catal., A, 2012, vols. 417–418, pp. 145–152.

    Article  Google Scholar 

  55. Hou, S., Xiong, W., Liu, L., Cao, Y., Liu, H., and Kou, Y., Effect of Na2SO4 on structure and catalytic properties of Mn/SiO2 for the oxidative coupling of methane, Chin. J. Catal., 2006, vol. 27, no. 8, pp. 678–682.

    CAS  Google Scholar 

  56. Mahmoodi, S., Ehsani, M.R., and Ghoreisi, S.M., Effect of promoter in the oxidative coupling of methane over the synthesized Mn/SiO2 nanocatalysts via incipient wetness impregnation, J. Ind. Eng. Chem., 2010, vol. 16, pp. 923–928.

    Article  CAS  Google Scholar 

  57. Mahmoodi, S., Ehsani, M.R., and Hamidzadeh, M., Effect of additives on Mn/SiO2 based catalysts on oxidative coupling of methane, Iran. J. Chem. Chem. Eng., 2011, vol. 30, no. 1, pp. 29–36.

    CAS  Google Scholar 

  58. Malekzadeh, A., Dalai, A.K., Khodadadi, A., and Mortazavi, Y., Structural features of Na2WO4–MOx/SiO2 catalysts in oxidative coupling of methane reactions, Catal. Commun., 2008, vol. 9, no. 5, pp. 960–965.

    Article  CAS  Google Scholar 

  59. Serres, T., Aquino, C., Miradatos, C., and Schuurman, Y., Influence of the composition/texture of Mn–Na–W catalysts on the oxidative coupling of methane, Appl. Catal., A, 2015, vol. 504, pp. 509–518.

    Article  CAS  Google Scholar 

  60. Godini, H.R., Gili, A., Görke, O., Arndt, S., Simon, U., Thomas, A., Schomäcker, R., and Wozny, G., Sol–gel method for synthesis of Mn–Na2WO4/SiO2 catalyst for methane oxidative coupling, Catal. Today, 2014, vol. 236, pp. 12–22.

    Article  CAS  Google Scholar 

  61. Nipan, G.D., Phase states of Na/W/Mn/SiO2 composites at temperatures of catalytic oxidative coupling of methane, Inorg. Mater., 2014, vol. 50, no. 10, pp. 1012–1018.

    Article  CAS  Google Scholar 

  62. Nipan, G.D., Phase states of Li/W/Mn/SiO2 composites in catalytic oxidative coupling of methane, Inorg. Mater., 2015, vol. 51, no. 4, pp. 389–395.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Nipan.

Additional information

Original Russian Text © G.D. Nipan, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 6, pp. 563–569.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nipan, G.D. Melt-assisted phase transformations of A/W/Mn/SiO2 (A = Li, Na, K, Rb, Cs) composite catalysts. Inorg Mater 53, 553–559 (2017). https://doi.org/10.1134/S0020168517060140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517060140

Keywords

Navigation