Skip to main content
Log in

Influence of cryochemical and ultrasonic processing on the texture and thermal decomposition of xerogels and properties of nanoceramics in the ZrO2〈Y2O3〉–Al2O3 system

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the influence of cryochemical and ultrasonic processing on the formation, structure, particle size, and thermal decomposition of xerogels in the ZrO2〈Y2O3〉–Al2O3 (20 wt %) system. Nanopowders of tetragonal-zirconia-based solid solutions with a high degree of tetragonality (c/a = 1.4366) have been synthesized. Al2O3 has been shown to slow down t-ZrO2 crystallite growth in the temperature range 600–1400°C. We have optimized nanopowder consolidation conditions, obtained nanoceramics stable to low-temperature “aging” in a humid medium, and investigated their physicochemical and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porozova, S.E. and Kulmetyeva, V.B., Influence of matrix replacement on consolidation processes of composite ceramic materials of ZrO2–Al2O3 system, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 4, pp. 420–426.

    Article  Google Scholar 

  2. Shevchenko, A.V., Lashneva, V.V., and Dudnik, E.V., Fabrication process and physicochemical properties of ceramics based on nanocrystalline zirconia composite powder, Nanosist., Nanomater., Nanotekhnol., 2014, vol. 12, no. 2, pp. 333–345.

    Google Scholar 

  3. Ivanova, A.S., Highly dispersed zirconium-containing oxide systems: synthesis, properties, and applications, Kinet. Catal., 2001, vol. 42, no. 3, pp. 354–365.

    Article  CAS  Google Scholar 

  4. Arsent'ev, M.Yu., Tikhonov, P.A., and Kalinina, M.V., Physicochemical properties of nanocrystalline composites based on ZrO2, Al2O3, and rare-earth oxides, Glass. Phys. Chem., 2011, vol. 37, no. 4, pp. 450–458.

    Article  Google Scholar 

  5. Shevchenko, A.V., Ruban, A.K., and Dudnik, E.V., High-performance zirconia-based ceramics, Ogneupory Tekh. Keram., 2000, no. 9, pp. 2–8.

    Google Scholar 

  6. Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., Advances in ceramic biomaterials, Ross. Khim. Zh., 2000, vol. 94, no. 6.4.2, pp. 34–46.

    Google Scholar 

  7. Morozova, L.V., Kalinina, M.V., Drozdova, I.A., et al., Zirconia-based nanoceramic—a promising material for restorative dentistry, Ross. Stomatol., 2015, vol. 8, no. 2, pp. 64–70.

    Article  Google Scholar 

  8. Chevalier, J., Gremillard, L., and Deville, S., Lowtemperature degradation of zirconia and implications for biomedical implants, Annu. Rev. Mater. Res., 2007, vol. 37, no. 1, pp. 1–32.

    Article  CAS  Google Scholar 

  9. Tsubakino, H., Nozato, R., and Homamoto, M., Effect of aluminia addition on the tetragonal-to-monoclinic phase transformation in zirconia–3 mol.% yttria, J. Am. Ceram. Soc., 1991, vol. 74, no. 2, pp. 440–443.

    Article  CAS  Google Scholar 

  10. Generalov, M.B., Kriokhimicheskaya nanotekhnologiya (Cryochemical Technology), Moscow: Akademkniga, 2006.

    Google Scholar 

  11. Khasanov, O.L., Dvilis, E.S., Polisadova, V.V., and Zykova, A.P., Effekty moshchnogo ul’trazvukovogo vozdeistviya na strukturu i svoistva nanomaterialov (Effects of High-Power Ultrasonic Processing on the Structure and Properties of Nanomaterials), Tomsk. Politekh. Univ., 2008.

    Google Scholar 

  12. Panova, T.I., Arsent’ev, M.Yu., Morozova, L.V., and Drozdova, I.A., Synthesis and investigation of the structure of ceramic nanopowders in the ZrO2–CeO2–Al2O3 system, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 470–477.

    Article  CAS  Google Scholar 

  13. Panova, T.I., Morozova, L.V., and Polyakova, I.G., Synthesis and investigation of properties of nanocrystalline zirconia and hafnia, Glass. Phys. Chem., 2011, vol. 37, no. 2, pp. 179–187.

    Article  CAS  Google Scholar 

  14. Doroshkevich, A.S., Danilenko, I.A., Konstantinova, T.E., et al., Formation of nanocrystalline particles in the ZrO2–3 mol % Y2O3 system, Fiz. Tekh. Vys. Davlenii, 2002, vol. 12, no. 3, pp. 38–47.

    CAS  Google Scholar 

  15. Gusev, A.I. and Kurlov, A.S., Particle (grain) size characterization of nanocrystalline materials, Metallofiz. Noveishie Tekhnol., 2008, vol. 30, no. 5, pp. 679–694.

    CAS  Google Scholar 

  16. Yagodkin, Yu.D. and Dobatkin, S.V., Electron microscopy and X-ray diffraction as tools for determining the size of structural elements in nanocrystalline materials (a review), Zavod. Lab., Diagn. Mater., 2007, vol. 73, no. 1, pp. 38–49.

    CAS  Google Scholar 

  17. Korolev, P.V., Knyazev, A.V., Gavrilov, I.R., et al., Xray diffraction and calorimetric studies of powder nanocrystalline systems based on ZrO2(Y) and Al2O3 with second insoluble component, Phys. Solid State, 2012, vol. 54, no. 2, pp. 267–272.

    Article  CAS  Google Scholar 

  18. Savchenko, N.L., Korolev, P., Mel’nikov, A.G., et al., Structure, phase composition, and mechanical properties of ZrO2–Y2O3–Al2O3 based composites, Perspekt. Mater., 2009, no. 7, pp. 267–272.

    Google Scholar 

  19. Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., Arsent’ev, M.Yu., and Shilova, O.A., Preparation of zirconia-based nanoceramics with a high degree of tetragonality, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 352–355.

    Article  CAS  Google Scholar 

  20. Sato, T. and Shimada, M., Control of the tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia in hot water, J. Mater. Sci., 1985, vol. 2, pp. 3988–3992.

    Article  Google Scholar 

  21. Zavodinsky, V.G. and Chibisov, A.N., Stability of cubic zirconia and of stoichiometric zirconia nanoparticles, Phys. Solid State, 2006, vol. 48, no. 2, pp. 363–368.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Morozova.

Additional information

Original Russian Text © L.V. Morozova, M.V. Kalinina, M.Yu. Arsent’ev, O.A. Shilova, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 6, pp. 654–661.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, L.V., Kalinina, M.V., Arsent’ev, M.Y. et al. Influence of cryochemical and ultrasonic processing on the texture and thermal decomposition of xerogels and properties of nanoceramics in the ZrO2〈Y2O3〉–Al2O3 system. Inorg Mater 53, 640–647 (2017). https://doi.org/10.1134/S0020168517060115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517060115

Keywords

Navigation