Inorganic Materials

, Volume 53, Issue 5, pp 489–495 | Cite as

Structure and optical properties of LiNbO3:ZnO (3.43–5.84 mol %) crystals

  • N. V. Sidorov
  • N. A. Teplyakova
  • A. A. Yanichev
  • M. N. Palatnikov
  • O. V. Makarova
  • L. A. Aleshina
  • A. V. Kadetova


LiNbO3:ZnO (3.43–5.84 mol %) crystals have been studied using Raman spectroscopy and fullprofile analysis of X-ray diffraction data. The results demonstrate that, at ZnO concentrations above 3.95 mol %, their structure is free of NbLi basic defects, which are characteristic of congruent lithium niobate crystals. Increasing the Zn concentration leads to changes in the arrangement of structural units in the cation sublattice along the polar axis and distorts the BO6 (B = Nb, Li, Zn, or a vacancy) oxygen octahedra. In the Raman spectra of the crystals, the width of the line at a frequency of 876 cm–1, which corresponds to stretching modes of the oxygens in the BO6 octahedra, has been shown to increase considerably, which may be due to changes in the character of bonding in the B–O–B bridges in response to changes in the Zn concentration in the crystals. The gradual increase in the electro-optical coefficients of the LiNbO3:ZnO crystals with increasing zinc concentration can be accounted for by changes in the ionic contribution to these bonds.


single crystal lithium niobate doping zinc cations Raman scattering full-profile analysis of Xray diffraction data stretching modes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sidorov, N.V., Volk, T.R., Mavrin, B.N., and Kalinnikov, V.T., Niobat litiya: defekty, fotorefraktsiya, kolebatel’nyi spektr, polyaritony (Lithium Niobate: Defects, Photorefractive Properties, Vibrational Spectrum, and Polaritons), Moscow: Nauka, 2003.Google Scholar
  2. 2.
    Chernaya, T.S., Volk, T.R., Verin, I.A., and Simonov, V.I., Threshold concentrations in zinc-doped lithium niobate crystals and their structural conditionality, Crystallogr. Rep., 2008, vol. 53, no. 4, pp. 573–578.CrossRefGoogle Scholar
  3. 3.
    Chernaya, T.S., Maksimov, B.A., Volk, T.R., Rubinina, N.M., and Simonov, V.I., Zn atoms in lithium niobate and mechanism of their insertion into crystals, JETP Lett., 2001, vol. 73, no. 2, pp. 103–106.CrossRefGoogle Scholar
  4. 4.
    Sidorov, N.V., Yanichev, A.A., Palatnikov, M.N., Gabain, A.A., and ikul’, O.Yu., Optical homogeneity, defects, and photorefractive properties of stoichiometric, congruent, and zinc-doped lithium niobate crystals, Opt. Spectrosc., 2014, vol. 117, no. 1, pp. 72–81.CrossRefGoogle Scholar
  5. 5.
    Palatnikov M.N., Biryukova I.V., Makarova O.V., Efremov V.V., Kravchenko, O.E., Skiba, V.I., Sidorov, N.V., and Efremov, I.N., Growth of heavily doped LiNbO3: Zn crystals, Inorg. Mater., 2015, vol. 51, no. 4, pp. 375–379.CrossRefGoogle Scholar
  6. 6.
    Palatnikov, M.N., Biryukova, I.V., Makarova, O.V., Sidorov, N.V., Efremov, V.V., Efremov, I.N., Teplyakova, N.A., and Manukovskaya, D.V., Research of concentration conditions for growth of strongly doped LiNbO3:Zn single crystals, Advanced Materials–-Manufacturing, Physics, Mechanics and Applications, Parinov,I.A., Eds., New York: Springer, 2016, vol. 175, pp. 87–99.Google Scholar
  7. 7.
    Sidorov, N.V., Palatnikov, M.N., Teplyakova, N.A., Gabain, A.A., and Efremov, I.N., Structural homogeneity of photorefractive LiNbO3 crystals doped with 0.003–4.5 mol % of ZnO, Opt. Spectrosc., 2016, vol. 120, no. 4, pp. 633–638.CrossRefGoogle Scholar
  8. 8.
    Aillerie, M., Bourson, P., Mostefa, M., Abdi, F., and Fontana, M.D., Photorefractive damage in congruent LiNbO3. Part I. Zinc doped lithium niobate crystals, J. Phys.: Conf. Ser., 2013, vol. 416, paper 012 001.Google Scholar
  9. 9.
    Volk, T.R. and Rubinina, N.M., Nonphotorefractive impurities in lithium niobate: magnesium and zinc, Fiz. Tverd. Tela (Leningrad), 1991, vol. 33, no. 4, pp. 1192–1201.Google Scholar
  10. 10.
    Schlarb, U., Woehlecke, M., Gather, B., Reichert, A., Betzler, K., Volk, T., and Rubinina, N., Refractive indices of Zn-doped lithium niobate, Opt. Mater., 1995, vol. 4, pp. 791–795.CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., Xu, Y.H., Li, M.H., and Zhao, Y.Q., Growth and properties of Zn doped lithium niobate crystal, J. Cryst. Growth, 2001, vol. 233, pp. 537–540.CrossRefGoogle Scholar
  12. 12.
    Abdi, F., Aillerie, M., Fontana, M., Bourson, P., Volk, T., Maximov, B., Sulyanov, S., Rubinina, N., and Wöhlecke, M., Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals, Appl. Phys. B, 1999, vol. 68, pp. 795–799.CrossRefGoogle Scholar
  13. 13.
    Zhao, L., Wang, X., Wang, B., Wen, W., and Zhang, T.-Y., ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements, Appl. Phys. B, 2004, vol. 78, no. 6, pp. 769–774.CrossRefGoogle Scholar
  14. 14.
    Sidorov, N.V., Palatnikov, M.N., Teplyakova, N.A., Gabain, A.A., and Efremov, I.N., Photorefractive properties of zinc-doped congruent lithium niobate crystals, Perspekt. Mater., 2015, no. 7, pp. 5–14.Google Scholar
  15. 15.
    Palatnikov, M.N., Sidorov, N.V., Biryukova, I.V., Shcherbina, O.B., and Kalinnikov, V.T., Granulated starting mixture for the growth of lithium niobate single crystals, Perspekt. Mater., 2011, no. 2, pp. 93–97.Google Scholar
  16. 16.
    Kuz’minov, Yu.S., Elektroopticheskii i nelineino-opticheskii kristall niobata litiya (Electro-Optic and Nonlinear Optical Lithium Niobate Crystals), Moscow: Nauka, 1987.Google Scholar
  17. 17.
    Kuz’minov, Yu.S., Osiko, V.V., and Prokhorov, A.M., Electro-optic and nonlinear optical properties of oxygen octahedron ferroelectrics (a review), Kvantovaya Elektron. (Moscow), 1980, vol. 7, no. 8, pp. 1621–1652.Google Scholar
  18. 18.
    Sidorov, N.B., Palatnikov, M.N., and Kalinnikov, V.T., Raman spectra and structure of lithium niobate crystals, Opt. Spektrosk., 1997, vol. 82, no. 1, pp. 38–45.Google Scholar
  19. 19.
    Anik’ev, A.A., Density of single- and two-particle states in lithium niobate crystals, Inzh. Zh.: Nauka Innov., 2013, no. 7, pp. 1–18.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. V. Sidorov
    • 1
  • N. A. Teplyakova
    • 1
  • A. A. Yanichev
    • 1
  • M. N. Palatnikov
    • 1
  • O. V. Makarova
    • 1
  • L. A. Aleshina
    • 2
  • A. V. Kadetova
    • 2
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Scientific CenterRussian Academy of SciencesApatity, Murmansk oblastRussia
  2. 2.Petrozavodsk State UniversityKareliaRussia

Personalised recommendations