Inorganic Materials

, Volume 53, Issue 5, pp 529–535 | Cite as

Fabrication of osteoconductive Ca3–x M2x (PO4)2 (M = Na, K) calcium phosphate bioceramics by stereolithographic 3D printing

  • V. I. Putlyaev
  • P. V. Evdokimov
  • T. V. Safronova
  • E. S. Klimashina
  • N. K. Orlov
Article

Abstract

Osteoconductive ceramic implants based on Ca3–x M2x (PO4)2 (M = Na, K) double phosphates and having the Kelvin structure, tailored macropore size (in the range 50–750 μm), and a total porosity of 70–80% have been produced by stereolithographic 3D printing. We demonstrate that, to maintain the initial geometry of a model and reach sufficiently high strength characteristics of macroporous ceramics (compressive strength up to 9 MPa and fracture toughness up to 0.7 MPa m1/2), the polymer component should be removed under specially tailored heat treatment conditions. Based on our results on polymer matrix destruction kinetics, we have found heat treatment conditions that ensure a polymer removal rate no higher than 0.1 wt%/min and allow one to avoid implant cracking during the firing process.

Keywords

bioceramics double calcium phosphates 3D printing stereolithography osteoconductivity Kelvin structure heat treatment strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ievlev, V.M., Putlyaev, V.I., Safronova, T.V., and Evdokimov, P.V., Additive technologies for making highly permeable inorganic materials with tailored morphological architectonics for medicine, Inorg. Mater., 2015, vol. 51, no. 13, pp. 1295–1313.CrossRefGoogle Scholar
  2. 2.
    Dorozhkin, S.V. and Epple, M., Biological and medical significance of calcium phosphates, Angew. Chem., Int. Ed., 2002, vol. 41, no. 17, pp. 3130–3146.CrossRefGoogle Scholar
  3. 3.
    Bohner, M., Physical and chemical aspects of calcium phosphates used in spinal surgery, Eur. Spine J., 2001, vol. 10, pp. 114–121.CrossRefGoogle Scholar
  4. 4.
    Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medical applications, Usp. Khim., 2010, vol. 79, no. 1, pp. 15–32.CrossRefGoogle Scholar
  5. 5.
    LeGeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D., et al., Biphasic calcium phosphate bioceramics: preparation, properties and applications, J. Mater. Sci.–Mater. Med., 2003, vol. 14, no. 3, pp. 201–209.CrossRefGoogle Scholar
  6. 6.
    Safronova, T.V. and Putlyaev, V.I., Medical inorganic materials research in Russia: calcium phosphate materials, Nanosist.: Fiz., Khim., Mat., 2013, vol. 4, no. 1, pp. 24–47.Google Scholar
  7. 7.
    Znamierowska, T., Uklad Ca3(PO4)2–CaKPO4–CaNaPO4, Zesz. Nauk. Politech. Slask. Ser.: Chem., 1982, vol. 709 [100], pp. 35–56.Google Scholar
  8. 8.
    Evdokimov, P.V., Putlyaev, V.I., Ivanov, V.K., Garshev, A.V., Shatalova, T.B., Orlov, N.K., Klimashina, E.S., and Safronova, T.V., Phase equilibria in the tricalcium phosphate–mixed calcium sodium (potassium) phosphate systems, Russ. J. Inorg. Chem., 2014, vol. 59, no. 11, pp. 1219–1227.CrossRefGoogle Scholar
  9. 9.
    Evdokimov, P.V., Synthesis of Ca3–xM2x(PO4)2 (M = Na, K) double phosphates for macroporous bioceramics with specialized architectures, Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State Univ., 2015.Google Scholar
  10. 10.
    Hing, K.A., Bioceramic bone graft substitutes: influence of porosity and chemistry, Int. J. Appl. Ceram. Technol., 2005, vol. 2, no. 3, pp. 184–199.CrossRefGoogle Scholar
  11. 11.
    Klawitter, J.J., Bagwell, J.G., Weinstein, A.M., and Sauer, B.W., An evaluation of bone growth into porous high density polyethylene, J. Biomed. Mater. Res., 1976, vol. 10, no. 2, pp. 311–323.CrossRefGoogle Scholar
  12. 12.
    Eggli, P.S., Mueller, W., and Schenk, R.K., Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits, Clin. Orth. Rel. Res., 1988, vol. 232, pp. 127–137.Google Scholar
  13. 13.
    Lord Kelvin (Thomson, W.), On the division of space with minimum partitional area, Phil. Mag., Ser. 5, 1887, vol. 24, no. 151, pp. 503–514. doi 10.1080/14786448708628135Google Scholar
  14. 14.
    Zocca, A., Colombo, P., Gomes, C.M., and Günster, J., Additive manufacturing of ceramics: issues, potentialities, and opportunities, J. Am. Ceram. Soc., 2015, vol. 98, no. 7, pp. 1983–2001.CrossRefGoogle Scholar
  15. 15.
    Evdokimov, P.V., Putlyaev, V.I., Ievlev, V.M., et al., Osteoconductive ceramics with a specified system of interconnected pores based on double calcium alkali metal phosphates, Dokl. Chem., 2015, vol. 460, no. 2, pp. 61–65.Google Scholar
  16. 16.
    Evans, A.G. and Charles, E.A., Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 1976, vol. 59, nos. 7–8, pp. 371–372.Google Scholar
  17. 17.
    Putlyaev, V.I., Evdokimov, P.V., Garshev, A.V., et al., Strength characteristics of resorbable osteoconductive ceramics based on calcium alkali metal double phosphates, Izv. Vyssh. Uchebn. Zaved., Fiz., 2013, vol. 56, no. 10, pp. 72–77.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. I. Putlyaev
    • 1
  • P. V. Evdokimov
    • 1
  • T. V. Safronova
    • 1
  • E. S. Klimashina
    • 1
  • N. K. Orlov
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations