Inorganic Materials

, Volume 53, Issue 5, pp 540–547 | Cite as

Sol–gel synthesis of 2D and 3D nanostructured YSZ:Yb3+ ceramics

  • O. P. Krivoruchko
  • T. V. Larina
  • A. V. Ishchenko
  • E. V. Pestryakov
  • M. A. Merzliakov
Article
  • 27 Downloads

Abstract

This paper presents results of a detailed study of fundamental aspects of the formation of 2D and 3D nanostructured YSZ:Yb3+ ceramics with a cubic structure through a key synthesis step in aqueous solutions of zirconium-containing hydroxy nanoparticles (1–2 nm) modified by Y3+ and Yb3+ ions, with the use of a sol–gel method and subsequent calcination of the resultant xerogels at temperatures above 350°C. As starting chemicals for the synthesis of ceramic powders, we used zirconyl, yttrium, and ytterbium nitrates and chlorides and aqueous ammonia. Using mixed solutions of these salts and a procedure developed by us, we synthesized sols, gels, and xerogels. To examine the effect of temperature on solid-state transformations, the xerogels were calcined according to a predetermined program in a muffle furnace at temperatures in the range from 350 to 1350°C (rarely, up to 1650°C). We focused primarily on ceramic powders close in composition to 0.86ZrO2 · 0.10Y2O3 · 0.04Yb2O3. The ceramics were characterized by high-resolution transmission electron microscopy, electron microdiffraction, electronic diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis, and X-ray fluorescence analysis.

Keywords

optically transparent ceramics sol–gel method 2D and 3D nanostructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peuchert, U., Okano, Y., Menke, Y., Reichel, S., and Ikesue, A., Transparent cubic-ZrO2 ceramics for application as optical lenses, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 283–291.CrossRefGoogle Scholar
  2. 2.
    Ikesue, A. and Aung, Y., Synthesis and performance of advanced ceramic lasers, J. Am. Ceram. Soc., 2006, vol. 89, no. 6, pp. 1936–1944.CrossRefGoogle Scholar
  3. 3.
    Tsukuma, K., Transparent titania–yttria–zirconia ceramics, J. Mater. Sci. Lett., 1986, vol. 5, pp. 1143–1144.CrossRefGoogle Scholar
  4. 4.
    Muha, G.M. and Vanghan, Ph.A., Structure of the complex ion in aqueous solutions of zirconyl and hafnyl oxyhalides, J. Chem. Phys., 1960, vol. 33, no. 1, pp. 194–199.CrossRefGoogle Scholar
  5. 5.
    Singhal, A., Toth, L.M., Lin, J.S., and Affholter, K., Zirconium(IV) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution, J. Am. Chem. Soc., 1996, vol. 118, no. 46, pp. 11529–11534.CrossRefGoogle Scholar
  6. 6.
    Simonenko, N.M., Simonenko, E.P., Sevastyanov, V.G., and Kuznetsov, N.T., Production of 8%Y2O3–92%ZrO2 (8YSZ) thin films by sol–gel technology, Russ. J. Inorg. Chem., 2015, vol. 60, no. 7, pp. 795–803.CrossRefGoogle Scholar
  7. 7.
    Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1987, 2nd ed.Google Scholar
  8. 8.
    Hull, S., Superionics: crystal structures and conduction, Rep. Prog. Phys., 2004, vol. 67, no. 7, pp. 1233–1314.CrossRefGoogle Scholar
  9. 9.
    Zavodinsky, V.G. and Chibisov, A.N., Stability of cubic zirconia and of stoichiometric zirconia nanoparticles, Phys. Solid State, 2006, vol. 48, no. 2, pp. 363–367.CrossRefGoogle Scholar
  10. 10.
    Orera, V.M., Merino, R.I., Chen, Y., Cases, R., and Alonso, P.J., Intrinsic electron and hole defects in stabilized zirconia single crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 1990, vol. 42, no. 16, pp. 9782–9789.CrossRefGoogle Scholar
  11. 11.
    Gionco, Ch., Paganini, M.C., Giamello, E., Burgess, R., Valentin, D.C., and Pacchioni, G., Paramagnetic defects in polycrystalline zirconia: an EPR and DFT study, Chem. Mater., 2013, vol. 25, pp. 2243–2253.CrossRefGoogle Scholar
  12. 12.
    Rydberg, S., Radiation induced losses in ytterbium doped laser materials, PhD Thesis, Sundsvall, 2013.Google Scholar
  13. 13.
    Nakazawa, E. and Shionoya, S., Cooperative luminescence in YbPO4, Phys. Rev. Lett., 1970, vol. 25, no. 25, pp. 1710–1712.CrossRefGoogle Scholar
  14. 14.
    Stryganyuk, G., Trots, D., Berezovskaya, I., Shalapska, T., Voloshinovskii, A., Dotsenko, V., and Zimmerer, G., Luminescence of YbP3O9 upon excitation in the UV–VUV range, J. Phys.: Condens. Matter, 2007, vol. 19, paper 6236–6246.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. P. Krivoruchko
    • 1
  • T. V. Larina
    • 1
  • A. V. Ishchenko
    • 1
    • 2
  • E. V. Pestryakov
    • 2
    • 3
  • M. A. Merzliakov
    • 2
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National State Research University (NSU)NovosibirskRussia
  3. 3.Institute of Laser Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations