Advertisement

Inorganic Materials

, Volume 53, Issue 5, pp 548–551 | Cite as

Behavior of titanium diboride nanofilms and nanopowders in hydrochloric acid solutions

  • I. I. Korobov
  • G. V. Kalinnikov
  • A. V. Ivanov
  • N. N. Dremova
  • A. A. Vinokurov
  • S. P. Shilkin
  • R. A. Andrievskii
Article
  • 29 Downloads

Abstract

We have studied the behavior of TiB2 nanofilms and nanopowders in HCl solutions of various concentrations (1.2 to 12.0 mol/L). The TiB2 films were grown by nonreactive magnetron sputtering in an additional magnetic field or without it. The TiB2 powder was prepared by reacting fine-particle titanium and boron in a Na2B4O7 ionic melt. The samples were characterized by X-ray diffraction, electron microscopy, energy dispersive X-ray spectroscopy, and atomic force microscopy. The reactions with the acid solutions were studied by atomic absorption spectroscopy. The results demonstrate that a magnetic field applied during the sputtering process improves the corrosion resistance of the films. Titanium diboride powders consisting of rounded particles are shown to have the highest resistance to dissolution in hydrochloric acid.

Keywords

titanium diboride thin films powders additional external magnetic field corrosion hydrochloric acid roughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barsoum, M.W., MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, New York: Wiley, 2013.CrossRefGoogle Scholar
  2. 2.
    Andrievskii, R.A., Nanostructured titanium, zirconium, and hafnium diborides: synthesis, properties, size effects, and stability, Usp. Khim., 2015, vol. 84, no. 5, pp. 540–554.Google Scholar
  3. 3.
    Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.Google Scholar
  4. 4.
    Andrievskii, R.A., The role of nanoscale effects in the interaction between nanostructured materials and environments, Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 5, pp. 528–540.CrossRefGoogle Scholar
  5. 5.
    Dranenko, A.S., Lavrenko, V.A., and Talash, V.N., Corrosion resistance of TiB2 nanostructured films in a 3% NaCl solution, Poroshk. Metall. (Kiev), 2010, nos. 3–4, pp. 63–68.Google Scholar
  6. 6.
    Pan, X., Shen, K., Xu, J., and Liu, L., Preparation and corrosion resistance of amorphous–nanocrystalline films, Chin. J. Electron Devices, 2012, vol. 35, pp. 135–138.Google Scholar
  7. 7.
    Korobov, I.I., Kalinnikov, G.V., Ivanov, A.V., Dremova, N.N., Andrievski, R.A., and Shilkin, S.P., Corrosion resistance of nanostructured films of titanium diboride in mineral acid solutions, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 4, pp. 83–87.CrossRefGoogle Scholar
  8. 8.
    Kalinnikov, G.V., Andrievski, R.A., Kopylov, V.N., and Louzguine, D., Properties of nanostructured and amorphous films in the TiB2–B4C system, Phys. Solid State, 2008, vol. 50, no. 2, pp. 374–378.CrossRefGoogle Scholar
  9. 9.
    Kalinnikov, G.V., Andrievski, R.A., and Egorov, V.K., Amorphous/nanocrystalline films prepared by magnetron sputtering with additional magnetic field, J. Nano Res., 2009, vol. 6, pp. 89–98.CrossRefGoogle Scholar
  10. 10.
    Fokin, V.N., Fokina, E.E., Tarasov, B.P., and Shilkin, S.P., Synthesis of the tetragonal titanium dihydride in ultradispersed state, Int. J. Hydrogen Energy, 1999, vol. 24, nos. 2–3, pp. 111–114.CrossRefGoogle Scholar
  11. 11.
    Volkova, L.S., Kravchenko, S.E., Korobov, I.I., Kolesnikova, A.M., Dremova, N.N., Burlakova, A.G., Kalinnikov, G.V., and Shilkin, S.P., Preparation of titanium diboride nanopowders of different particle sizes, Inorg. Mater., 2013, vol. 49, no. 11, pp. 1086–1090.CrossRefGoogle Scholar
  12. 12.
    Andrievski, R.A. and Kalinnikov, G.V., Synthesis and properties of TiB2/TiN and TiB2/B4C films, Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Voevodin, A.A. et al., Eds., Dordrecht: Kluwer Academic, 2004, pp. 175–182.Google Scholar
  13. 13.
    Eksperimental’nye metody v adsorbtsii i molekulyarnoi khromatografii (Experimental Techniques in Adsorption and Molecular Chromatography), Kiselev, A.V. and Dreving, V.P., Eds., Moscow: Mosk. Gos. Univ., 1973.Google Scholar
  14. 14.
    Khaldeev, G.V. and Syur, T.A., Electrochemistry of single crystals with well-characterized surfaces, Usp. Khim., 1992, vol. 61, no. 4, pp. 734–764.CrossRefGoogle Scholar
  15. 15.
    Shin, K.S., Bian, M.Z., and Nam, N.D., Effects of crystallographic orientation on corrosion behavior of magnesium single crystals, J. Miner. Met. Mater. Soc., 2012, vol. 64, no. 6, pp. 664–670.CrossRefGoogle Scholar
  16. 16.
    Zhao, Y., Cheng, I.C., Kassner, M.E., and Hodge, A.M., The effect of nanotwins on the corrosion behavior of copper, Acta Mater., 2014, vol. 67, pp. 181–188.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. I. Korobov
    • 1
  • G. V. Kalinnikov
    • 1
  • A. V. Ivanov
    • 1
  • N. N. Dremova
    • 1
  • A. A. Vinokurov
    • 1
  • S. P. Shilkin
    • 1
  • R. A. Andrievskii
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations