Inorganic Materials

, Volume 53, Issue 5, pp 496–501 | Cite as

Solid-state synthesis of nanocrystalline BaZrO3 using mechanical activation

  • A. M. Kalinkin
  • K. V. Balyakin
  • E. V. Kalinkina
  • V. N. Nevedomskii
Article

Abstract

Nanocrystalline BaZrO3 has been prepared by solid-state reaction, using preliminary mechanical activation of a stoichiometric mixture of BaCO3 and ZrO2. The mechanical activation was performed in an AGO-2 centrifugal planetary mill for 10 min at a centrifugal factor of 40g. The effect of mechanical activation of the reactant mixture on the processes that take place during subsequent heating of the mixture has been studied using a combination of thermoanalytical techniques. The synthesized barium zirconate, with an average crystallite size from 50 to 100 nm, has been characterized by X-ray diffraction and scanning and transmission electron microscopy.

Keywords

barium zirconate nanocrystalline state synthesis mechanical activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azad, A.M., Subramaniam, S., and Dung, T.W., On the development of high density barium metazirconate (BaZrO3) ceramics, J. Alloys Compd., 2002, vol. 334, nos. 1–2, pp. 118–130.CrossRefGoogle Scholar
  2. 2.
    Vassen, R., Cao, X., Tietz, F., Basu, D., and Stover, D., Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc., 2000, vol. 83, no. 8, pp. 2023–2028.CrossRefGoogle Scholar
  3. 3.
    Moreira, M.L., Andrés, J., Varela, J.A., and Longo, E., Synthesis of fine micro-sized BaZrO3 powders based on a decaoctahedron shape by the microwave-assisted hydrothermal method, Cryst. Growth Des., 2009, vol. 9, no. 2, pp. 833–839.CrossRefGoogle Scholar
  4. 4.
    Sharma, A.D. and Sinha, M.M., Lattice dynamics of protonic conductors AZrO3 (A = Ba,Sr & Pb). A comparative study, Adv. Mater. Res., 2013, vol. 685, pp. 191–194.CrossRefGoogle Scholar
  5. 5.
    Kanie, K., Seino, Y., Matsubara, M., Nakaya, M., and Muramatsua, A., Hydrothermal synthesis of BaZrO3 fine particles controlled in size and shape and fluorescence behavior by europium doping, New J. Chem., 2014, vol. 38, no. 8, pp. 3548–3555.CrossRefGoogle Scholar
  6. 6.
    Borja-Urby, R., Diaz-Torres, L.A., Salas, P., Moctezuma, E., Vega, M., and Angeles-Chavez, C., Structural study, photoluminescence and photocatalytic activity of semiconducting BaZrO3:Bi nano crystals, Mater. Sci. Eng., B., 2011, vol. 176, no. 13, pp. 1382–1387.CrossRefGoogle Scholar
  7. 7.
    Prastomo, N., Zakaria, N.H.B., Kawamura, G., Muto, H., Sakai, M., and Matsuda, A., High surface area BaZrO3 photocatalyst prepared by base–hot-water treatment, J. Eur. Ceram. Soc., 2011, vol. 31, no. 14, pp. 2699–2705.CrossRefGoogle Scholar
  8. 8.
    Zhang, J.L. and Evetts, J.E., BaZrO3 and BaHfO3: preparation, properties and compatibility with YBa2Cu3O7–x, J. Mater. Sci., 1994, vol. 29, no. 3, pp. 778–785.CrossRefGoogle Scholar
  9. 9.
    Zajac, W., Rusinek, D., Zheng, K., and Molenda, J., Applicability of Gd-doped BaZrO3,SrZrO3,BaCeO3 and SrCeO3 proton conducting perovskites as electro-lytes for solid oxide fuel cells, Cent. Eur. J. Chem., 2013, vol. 11, no. 4, pp. 471–484.Google Scholar
  10. 10.
    Keler, E.K. and Godina, N.A., Solid-state reactions of zirconium dioxide with magnesium, calcium, and barium oxides, Ogneupory, 1953, no. 9, pp. 416–426.Google Scholar
  11. 11.
    Bois, G.V., Gindin, E.I., Mikhailova, N.A., Prodavtsova, E.I., and Prokhvatilov, V.G., Reactions of ZrO2 with alkaline-earth carbonates, Izv. Akad. Nauk SSSR, Neorg. Mater., 1976, vol. 12, no. 3, pp. 456–460.Google Scholar
  12. 12.
    Ubaldini, A., Buscaglia, V., Uliana, C., Costa, G., and Ferretti, M., Kinetics and mechanism of formation of barium zirconate from barium carbonate and zirconia powders, J. Am. Ceram. Soc., 2003, vol. 86, pp. 19–25.CrossRefGoogle Scholar
  13. 13.
    Kolen’ko, V.V., Burukhin, A.A., Churagulov, B.R., Oleinikov, N.N., and Vanetsov, A.S., On the possibility of preparing fine-particle barium zirconate by hydrothermal synthesis, Inorg. Mater., 2002, vol. 38, no. 3, pp. 252–255.CrossRefGoogle Scholar
  14. 14.
    Boschini, F., Rulmont, A., Cloots, R., and Vertruyen, B., Rapid synthesis of submicron crystalline barium zirconate BaZrO3 by precipitation in aqueous basic solution below 100°C, J. Eur. Ceram. Soc., 2009, vol. 29, no. 8, pp. 1457–1462.CrossRefGoogle Scholar
  15. 15.
    Nakashima, K., Goto, T., Iwatsuki, S., Kera, M., Fujii, I., and Wada, S., Preparation of BaZrO3 nanoparticles using a solvothermal reaction, Mater. Sci. Eng., 2011, vol. 18, paper 092 049.Google Scholar
  16. 16.
    Sin, A., El Montaser, B., and Odier, P., Synthesis and sintering of large batches of barium zirconate nanopowders, J. Am. Ceram. Soc., 2002, vol. 85, no. 8, pp. 1928–1932.CrossRefGoogle Scholar
  17. 17.
    Stuart, P.A., Unno, T., Ayres-Rocha, R., Djurado, E., and Skinner, S.J., The synthesis and sintering behaviour of BaZr0.9Y0.1O3 - d powders prepared by spray pyrolysis, J. Eur. Ceram. Soc., 2009, vol. 29, no. 4, pp. 697–702.CrossRefGoogle Scholar
  18. 18.
    Kumar, H.P., Vijayakumar, C., George, C.N., Solomon, S., Jose, R., Thomas, J.K., and Koshy, J., Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process, J. Alloys Compd., 2008, vol. 458, nos. 1–2, pp. 528–531.CrossRefGoogle Scholar
  19. 19.
    Taglieri, G., Tersigni, M., Villa, P.L., and Mondelli, C., Synthesis by the citrate route and characterisation of BaZrO3,a high tech ceramic oxide: preliminary results, Int. J. Inorg. Mater., 1999, vol. 1, no. 1, pp. 103–110.CrossRefGoogle Scholar
  20. 20.
    Antunes, I., Brandao, A., Figueiredo, F.M., Frade, J.R., Gracio, J., and Fagg, D.P., Mechanosynthesis of nanopowders of the proton-conducting electrolyte material Ba(Zr,Y)O3–d, J. Solid State Chem., 2009, vol. 182, no. 8, pp. 2149–2156.CrossRefGoogle Scholar
  21. 21.
    Khani, Z., Taillades-Jacquin, M., Taillades, G., Marrony, M., Jones, D.J., and Roziè re, J., New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics, J. Solid State Chem., 2009, vol. 182, no. 4, pp. 790–798.CrossRefGoogle Scholar
  22. 22.
    Heinicke, G., Tribochemistry, Berlin: Akademie, 1984.Google Scholar
  23. 23.
    Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Activation of Chemical Processes), Novosibirsk: Nauka, 1986.Google Scholar
  24. 24.
    Boldyrev, V.V., Mechanochemistry and mechanical activation of solids, Usp. Khim., 2006, vol. 75, no. 3, pp. 203–216.CrossRefGoogle Scholar
  25. 25.
    Fundamental'nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimicheskikh tekhnologii (Basic Principles of Mechanical Activation, Mechanochemical Synthesis, and Mechanochemical Technologies), Avvakumov, E.G., Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2009.Google Scholar
  26. 26.
    Butyagin, P.Yu., Critical issues and future prospects in mechanochemistry, Usp. Khim., 1994, vol. 63, no. 12, pp. 1031–1043.CrossRefGoogle Scholar
  27. 27.
    Zyryanov, V.V., Mechanochemical synthesis of mixed oxides, Usp. Khim., 2008, vol. 77, no. 2, pp. 107–137.CrossRefGoogle Scholar
  28. 28.
    Kopylov, A.V., Avvakumov, E.G., and Urakaev, F.Kh., Mechanochemical interaction of barium carbonate with Group IV–VI oxides, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk., 1979, vol. 4, no. 9, pp. 8–14.Google Scholar
  29. 29.
    Marchev, V.M., Gospodinov, G.G., and Stoyanov, D.G., Mechanochemical synthesis of calcium, strontium, and barium zirconates, Russ. J. Gen. Chem., 1999, vol. 69, no. 3, pp. 360–362.Google Scholar
  30. 30.
    Kalinkin, A.M., Balyakin, K.V., and Kalinkina, E.V., Effect of mechanical activation on kinetic features of BaZrO3 formation, Russ. J. Gen. Chem., 2014, vol. 84, no. 12, pp. 2388–2392.CrossRefGoogle Scholar
  31. 31.
    Zyryanov, V.V., Sysoev, V.F., Boldyrev, V.V., and Korosteleva, T.V., USSR Inventor’s Certificate no. 1 375 328, Byull. Izobret., 1988, no. 7.Google Scholar
  32. 32.
    Kalinkin, A.M., Nevedomskii, V.N., Kalinkina, E.V., and Balyakin, K.V., Milling assisted synthesis of calcium zirconate CaZrO3, Solid State Sci., 2014, vol. 34, pp. 91–96.CrossRefGoogle Scholar
  33. 33.
    Kalinkin, A.M., Balyakin, K.V., Nevedomskii, V.N., and Kalinkina, E.V., Solid-state synthesis of nanocrystalline strontium zirconate assisted by mechanical activation, Russ. J. Gen. Chem., 2016, vol. 86, no. 4, pp. 785–791.CrossRefGoogle Scholar
  34. 34.
    Khimicheskaya entsiklopediya (Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1.Google Scholar
  35. 35.
    Volkov, A.I. and Zharskii, I.M., Bol’shoi khimicheskii spravochnik (Unabridged Handbook of Chemistry), Minsk: Sovremennaya Shkola, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. M. Kalinkin
    • 1
  • K. V. Balyakin
    • 1
  • E. V. Kalinkina
    • 1
  • V. N. Nevedomskii
    • 2
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Minerals, Kola Scientific CenterRussian Academy of SciencesApatity, Murmansk oblastRussia
  2. 2.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations