Advertisement

Inorganic Materials

, Volume 53, Issue 5, pp 469–476 | Cite as

Surface composition and morphology of a carbon matrix/Mo2C composite material

  • E. G. Il’in
  • A. S. Parshakov
  • Yu. A. Teterin
  • K. I. Maslakov
  • A. Yu. Teterin
Article
  • 44 Downloads

Abstract

The surface composition and morphology of a carbon matrix/Mo2C composite have been studied by scanning electron microscopy and X-ray photoelectron spectroscopy. The results demonstrate that the carbon matrix has the form of entangled filaments of carbon nanotubes. The surface layer of the composite contains 57 carbon atoms per molybdenum atom. Molybdenum is present here in the form of the Mo2C carbide (39 at %) and the Mo2O5 (50 at %) and MoO2 (11 at %) oxides, with E b(Mo 3d 5/2) = 228.2, 229.6, and 231.9 eV, respectively. The presence of the Mo4+ and Mo5+ oxides in the surface layer is due to active reaction of the Mo2C in the composite with atmospheric oxygen and moisture during the sample preparation process and can be accounted for by the small particle size of the material. Based on analysis of the structure of the C 2s and C 2p valence electron spectra, we assume that the carbon nanotubes of the composite are graphitelike carbon structures. The composite studied here does not become charged when exposed to an X-ray beam, which suggests that it is a weak dielectric.

Keywords

nanocomposites molybdenum carbide Mo2carbon nanotubes X-ray photoelectron spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouchy, C., Huu, C.P., and Heinrich, B., Microstructure and characterization of a highly selective catalyst for the isomerization of alkanes: a molybdenum oxycarbide, J. Catal., 2000, vol. 190, pp. 92–103.CrossRefGoogle Scholar
  2. 2.
    Jae S. Lee, Mi H. Yeom, Ki Y. Park, In-Sik Nam, Jong S. Chung, Young G. Kim., and Sang H. Moon, Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts, J. Catal., 1991, vol. 128, pp. 126–136.CrossRefGoogle Scholar
  3. 3.
    Neylon, M.K., Choi, S., Kwon, H., Cuny, K.E., and Thompson, L.T., Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and isomerization, Appl. Catal., A, 1999, vol. 183, pp. 253–263.CrossRefGoogle Scholar
  4. 4.
    Han Junxing, Duan Jinzhao, Chen Ping, Lou Hui, Xiaoming Zheng, and Haiping Hong, Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils, Green Chem., 2011, vol. 13, pp. 2561–2568.CrossRefGoogle Scholar
  5. 5.
    Il’in, E.G., Parshakov, A.S., Iskhakova, L.D., Buryak, A.K., and Dzhavad Ogly, A.A., Thermal stability and decomposition products of a MoCl1.9 ± 0.1C30 ± 1H30 ± 1 composite, Inorg. Mater., 2014, vol. 51, no. 6, pp. 631–635.CrossRefGoogle Scholar
  6. 6.
    Il’in, E.G., Parshakov, A.S., Buryak, A.K., Kochubei, D.I., Drobot, D.V., and Nefedov, V.I., Nanosized clusters of molybdenum chlorides—active sites in catalytic acetylene oligomerization, Dokl. Phys. Chem., 2009, vol. 427, no. 2, pp. 150–154.CrossRefGoogle Scholar
  7. 7.
    Il’in, E.G., Parshakov, A.S., Teterin, A.Yu., Maslakov, K.I., and Teterin, Yu.A., X-ray photoelectron spectroscopic characterization of the acetylene cyclotrimerization catalyst NbCl2(CnHn) (n = 10–12), Russ. J. Inorg. Chem., 2011, vol. 56, no. 11, pp. 1788–1793.CrossRefGoogle Scholar
  8. 8.
    Il’in, E.G., Parshakov, A.S., Teterin, A.Yu., Maslakov, K.I., and Teterin, Yu.A., X-ray photoelectron study of the MoCl2C30H30 composite, Inorg. Mater., 2011, vol. 47, no. 4, pp. 442–448.CrossRefGoogle Scholar
  9. 9.
    Nefedov, V.I., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii (X-ray Photoelectron Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.Google Scholar
  10. 10.
    Teterin, Yu.A. and Gagarin, S.G., Inner valence molecular orbitals of compounds and the structure of X-ray photoelectron spectra, Usp. Khim., 1996, vol. 65, no. 10, pp. 895–912.CrossRefGoogle Scholar
  11. 11.
    Teterin, Yu.A. and Baev, A.S., Rentgenovskaya fotoelektronnaya spektroskopiya soedinenii lantanoidov (X-ray Photoelectron Spectroscopy of Lanthanide Compounds), Moscow: TsNIIAtominform, 1987.Google Scholar
  12. 12.
    Shirley, D.A., High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B: Solid State, 1972, no. 5, pp. 4709–4714.CrossRefGoogle Scholar
  13. 13.
    Nemoshkalenko, V.V. and Aleshin, A.G., Elektronnaya spektroskopiya kristallov (Electron Spectroscopy of Crystals), Kiev: Naukova Dumka, 1976.Google Scholar
  14. 14.
    Zhizhin, E.V., Pudikov, D.A., Rybkin, A.G., Ul’yanov, P.G., and Shikin, A.M., Synthesis and electronic structure of graphene on a nickel film adsorbed on graphite, Phys. Solid State, 2015, vol. 57, no. 9, pp. 1888–1895.CrossRefGoogle Scholar
  15. 15.
    Oshikawa, K., Nagai, M., and Omi, S., Characterization of molybdenum carbides for methane reforming by TPR, XRD and XPS, J. Phys. Chem. B, 2001, vol. 105, no. 38, pp. 9124–9131.CrossRefGoogle Scholar
  16. 16.
    Sosul’nikov, M.I. and Teterin, Yu.A., X-ray photoelectron study of calcium, strontium, barium, and their oxides, Dokl. Akad. Nauk SSSR, 1991, vol. 317, no. 2, pp. 418–421.Google Scholar
  17. 17.
    Baev, A.S., Zelenkov, A.G., Kuakov, V.M., Odinov, B.V., Smilga, V.P., Teterin, Yu.A., Tumanov, Yu.P., and Chugunov, O.K., Radiation damage in pyrolytic graphite studied by X-ray photoelectron spectroscopy, Strukt. Khim., 1980, vol. 21, no. 5, pp. 29–33Google Scholar
  18. 18.
    Scofield, J.H., Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. Relat. Phenom., 1976, no. 8, pp. 129–137.CrossRefGoogle Scholar
  19. 19.
    Johansson, L.I., Hagstrom, A.L., Jacobson, B.E., and Hagstrom, S.B.M., ESCA studies of core level shifts and valence band structure in nonstoichiometric single crystal of titanium carbide, J. Electron Spectrosc. Relat. Phenom., 1977, no. 10, pp. 259–271.CrossRefGoogle Scholar
  20. 20.
    Gubanov, V.A. and Connolly, J.V.D., MS Xa calculations of the cluster in titanium carbide, Chem. Phys. Lett., 1976, vol. 44, no. 1, pp. 139–144.CrossRefGoogle Scholar
  21. 21.
    Politi, J.R.S., Vines, F., Rodriguez, J.A., and Illas, F., Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces, Phys. Chem. Chem. Phys., 2013, no. 15, pp. 12617–12625.CrossRefGoogle Scholar
  22. 22.
    Wang, X.R., Yany, M.F., and Chen, H.T.J., First-principle calculations of hardness and melting point of Mo2C, Mater. Sci. Technol., 2009, vol. 25, no. 3, pp. 419–422.CrossRefGoogle Scholar
  23. 23.
    Ostling, D., Tomanek, D., and Rosen, A., Electronic structure of single-wall, multiwall, and filled carbon nanotubes, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, vol. 55, no. 20, pp. 13980–13989.Google Scholar
  24. 24.
    Fedorov, A.S. and Sorokin, P.B., Optimization of the calculations of the electronic structure of carbon nanotubes, Phys. Solid State, 2005, vol. 47, no. 11, pp. 2196–2203.CrossRefGoogle Scholar
  25. 25.
    Ihara, H. and Watanabe, K., Electronic bond structures of the NbC–NbN alloy system from the X-ray photoelectron spectroscopic measurement, Solid State Commun., 1981, vol. 38, pp. 1211–1213.CrossRefGoogle Scholar
  26. 26.
    Aleshin, V.G., Kharlamov, A.I., and Prokopenko, V.M., X-ray photoelectron spectra of metal-like carbides, Izv. Akad. Nauk SSSR, Neorg. Mater., 1981, vol. 17, no. 3, pp. 550–553.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. G. Il’in
    • 1
  • A. S. Parshakov
    • 1
  • Yu. A. Teterin
    • 2
    • 3
  • K. I. Maslakov
    • 3
  • A. Yu. Teterin
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Kurchatov Institute National Research CentreMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations