Inorganic Materials

, Volume 53, Issue 5, pp 536–539 | Cite as

Optimization of the composition and sintering conditions of high-voltage ZnO varistor ceramics

  • O. G. Gromov
  • Yu. A. Savel’ev
  • E. L. Tikhomirova
  • A. T. Belyaevskii
  • E. P. Lokshin
Article
  • 34 Downloads

Abstract

This paper presents a study aimed at optimizing the composition and sintering conditions of highvoltage ZnO varistor ceramics. We demonstrate that, with allowance for the cost of starting materials, the optimal composition of high-voltage ZnO varistor ceramics is as follows (wt %): ZnO, 90; Bi2O3, 2.76; Sb2O3, 1.92; Al2O3, 3.32; and Co2O3, 2. The optimal sintering conditions are isothermal holding at a temperature of 975°C for 2 h. The ceramics thus prepared have V b = 4.5 kV/mm, α = 50, I l = 1.1 μA/cm2, density ρ = 5.67 g/cm3 (relative density of 96.1%).

Keywords

ZnO ceramics combustion synthesis sintering isothermal holding varistor properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lihong Cheng, Guorong Li, Liaoying Zheng, Yan Gu, and Fuping Zhang, Analysis of high-voltage ZnO varistor prepared from a novel chemically aided method, J. Am. Ceram. Soc., 2010, vol. 93, no. 9, pp. 2522–2525.CrossRefGoogle Scholar
  2. 2.
    Pinskaya, D.B., Zhukovskaya, I.V., Sinel’shchikova, T.Yu., and Saenko, I.V., RF Patent 2 514 085, Byull. Izobret., 2014, no. 12.Google Scholar
  3. 3.
    Nahm, C.-W., Effect of MnO2 addition on microstructure and electrical properties of ZnO–V2O5-based varistor ceramics, Ceram. Int., 2009, vol. 35, pp. 541–546.Google Scholar
  4. 4.
    Lihong Cheng, Guorong Li, Liaoying Zheng, Jiangtao Zeng, Yan Gu, and Fuping Zhang, Analysis of highvoltage ZnO varistor prepared from a novel chemically aided method, J. Am. Ceram. Soc., 2010, vol. 93, no. 9, pp. 2522–2525.CrossRefGoogle Scholar
  5. 5.
    Lauf, R.J. and Bond, W.D., Fabrication of high field zinc oxide varistors by sol–gel processing, Am. Ceram. Soc. Bull., 1984, vol. 63, pp. 278–281.Google Scholar
  6. 6.
    Duran, P., Capel, F., Tartaj, J., and Moure, C., Sintering behavior and electrical properties of nanosized doped ZnO powders produced by metallorganic polymeric processing, J. Am. Ceram. Soc., 2001, vol. 84, pp. 1661–1668.CrossRefGoogle Scholar
  7. 7.
    Chu, S.Y., Yan, T.M., and Chen, S.L., Analysis of ZnO varistors prepared by the sol–gel method, Ceram. Int., 2000, vol. 26, pp. 733–737.CrossRefGoogle Scholar
  8. 8.
    Hembram, K., Sivaprahasam, D., and Rao, T.N., Combustion synthesis of doped nanocrystalline ZnO powders for varistors applications, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 1905–1913.CrossRefGoogle Scholar
  9. 9.
    Gromov, O.G., Savel’ev, Yu.A., Tikhomirova, E.L., Danilin, A.N., Kolobov, V.V., Lokshin, E.P., and Kalinnikov, V.T., Preparation of high-voltage ZnO varistor ceramics, Inorg. Mater., 2015, vol. 51, no. 5, pp. 516–519.CrossRefGoogle Scholar
  10. 10.
    Liyi Shi, Dong Xu, Qingdong Zhong, Zhenhong Wu, and Xinxin Wu, Chin. Patent 101 333 104, 2008.Google Scholar
  11. 11.
    Gromov, O.G., Savel’ev, Yu.A., Tikhomirova, E.L., Danilin, A.N., Kolobov, V.V., Lokshin, E.P., and Kalinnikov, V.T., Preparation of high-breakdown-voltage ZnO varistor ceramics, Perspekt. Mater., 2015, no. 2, pp. 63–68.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. G. Gromov
    • 1
  • Yu. A. Savel’ev
    • 1
  • E. L. Tikhomirova
    • 1
  • A. T. Belyaevskii
    • 1
  • E. P. Lokshin
    • 1
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Scientific CenterRussian Academy of SciencesApatity, Murmansk oblastRussia

Personalised recommendations