Advertisement

Inorganic Materials

, Volume 53, Issue 5, pp 514–518 | Cite as

Vaporization in the Al2O3–MgO system

  • N. A. Gribchenkova
  • K. G. Smorchkov
  • A. G. Kolmakov
  • A. S. Alikhanyan
Article

Abstract

The pseudobinary system Al2O3–MgO has been studied in the temperature range 1750–2100 K by the Knudsen effusion method in combination with mass spectrometric analysis of the vapor phase. Over the entire composition range, except for the 100 mol % Al2O3 boundary, the vapor phase over the system consists of three species: Mg, O2, and O. The partial pressures obtained have been used to construct a p–x section through the Al2O3–MgO phase diagram at 1900 K. The standard enthalpy of formation of the MgAl2O4 spinel at 298 K has been determined by third-law calculations:–2301.61 ± 11.00 kJ/mol. We have derived equations for the temperature dependences of the partial pressures of the vapor species over the Al2O3–MgO system.

Keywords

Al2O3–MgO system MgAl2O4 Knudsen method mass spectrometry partial pressure standard enthalpy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harris, D.C., History of development of polycrystalline optical spinel in the US, Window and Dome Technologies and Materials IX(Orlando 2005), Proc. SPIE, 2005, vol. 5786, pp. 1–22.Google Scholar
  2. 2.
    Salmones, J., Galicia, J.A., Wang, J.A., Valenzuela, M.A., and Aguilar-Ris, G., Synthesis and characterization of nanocrystallite MgAl2O4 spinels, J. Mater. Sci. Lett., 2000, vol. 19, no. 12, pp. 1033–1037.CrossRefGoogle Scholar
  3. 3.
    Li, W.-Z., Kovarik, L., Mei, D., Liu, J., Wang, Y., and Peden, Ch.H.F., Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres, Nat. Commun., 2013, vol. 4, no. 2481, pp. 1–8.Google Scholar
  4. 4.
    Djenadic, R., Botros, M., and Hahn, H., Is Li-doped MgAl2O4 a potential solid electrolyte for an all-spinel Li-ion battery?, Solid State Ionics, 2016, vol. 287, pp. 71–76.CrossRefGoogle Scholar
  5. 5.
    Wiglusz, R.J., Boulon, G., Guyot, Y., Cuzik, M., Hreniak, D., and Strek, W., Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel, Dalton Trans., 2014, vol. 43, no. 21, pp. 7752–7759.CrossRefGoogle Scholar
  6. 6.
    Ganesh, I., A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications, Int. Mater. Rev., 2013, vol. 58, no. 2, pp. 63–112.CrossRefGoogle Scholar
  7. 7.
    Liu, J., Lv, X., Li, J., and Liu, Y., Synthesis of moltenelectrolyte corrosion resistant MgAl2O4–MgAlON sidewall materials by pressureless sintering, J. Alloys Compd., 2016, vol. 687, pp. 623–629.CrossRefGoogle Scholar
  8. 8.
    Raj, S.S., Mishra, D.R., Soni, A., Grover, V., Polymeris, G.S., Muthe, K.P., Jha, S.K., and Tyagi, A.K., TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C), Radiat. Phys. Chem., 2016, vol. 127, pp. 78–84.CrossRefGoogle Scholar
  9. 9.
    Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Vaporization of Oxides), Moscow: Nauka, 1997.Google Scholar
  10. 10.
    Sasamoto, T., Hara, H., and Sata, T., Mass-spectrometric study of the vaporization of magnesium oxide from magnesium aluminate spinel, Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 3327–3333.Google Scholar
  11. 11.
    Chase, M.W.J., NIST–JANAF thermochemical tables, J. Phys. Chem. Ref. Data, 1998, monograph 9.Google Scholar
  12. 12.
    Glushko, V.P., Termicheskie konstanty veshchestv: Spravochnik (Thermal Constants of Substances: A Handbook), Moscow: VINITI,1979, issue IX.Google Scholar
  13. 13.
    Zienert, T. and Fabrichnaya, O., Thermodynamic assessment and experiments in the system MgO–Al2O3, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2013, vol. 40, pp. 1–9.CrossRefGoogle Scholar
  14. 14.
    Navrotsky, A. and Kleppa, O.J., Thermodynamics of formation of simple spinels, J. Inorg. Nucl. Chem., 1968, vol. 30, no. 2, pp. 479–498.CrossRefGoogle Scholar
  15. 15.
    Gribchenkova, N.A., Steblevsky, A.V., and Alikhanyan, A.S., Vaporization thermodynamics of the ZnO–SnO2 system, J. Chem. Thermodyn., 2014, vol. 70, pp. 203–206.CrossRefGoogle Scholar
  16. 16.
    Mori, T., Solubility of Al2O3 in MgO, J. Ceram. Soc. Jpn., 1981, vol. 90, no. 1045, pp. 551–552.Google Scholar
  17. 17.
    Drowart, J., De Maria, G., and Inghram, M.G., Thermodynamic study of Al2O3 using a mass spectrometer, J. Chem. Phys., 1958, vol. 29, no. 5, pp. 1015–1021.CrossRefGoogle Scholar
  18. 18.
    Charlu, T.V., Newton, R.C., and Kleppa, O.J., Enthalpies of formation at 970 K of compounds in the system MgO–Al2O3–SiO2 from high temperature solution calorimetry, Geochim. Cosmochim. Acta, 1975, vol. 39, no. 11, pp. 1487–1497.CrossRefGoogle Scholar
  19. 19.
    Shearer, J.A. and Kleppa, O.J., The enthalpies of formation of MgAl2O4,MgSiO3,Mg2SiO4 and Al2SiO5 by oxide melt solution calorimetry, J. Inorg. Nucl. Chem., 1973, vol. 35, no. 4, pp. 1073–1078.CrossRefGoogle Scholar
  20. 20.
    Fujii, K., Nagasaka, T., and Hino, M., Activities of the constituents in spinel solid solution and free energies of formation of MgO, MgO · Al2O3, ISIJ Int., 2000, vol. 40, no. 11, pp. 1059–1066.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. A. Gribchenkova
    • 1
  • K. G. Smorchkov
    • 1
  • A. G. Kolmakov
    • 2
  • A. S. Alikhanyan
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations