Inorganic Materials

, Volume 53, Issue 5, pp 510–513 | Cite as

Synthesis and high-temperature heat capacity of Yb2Sn2O7 and Lu2Sn2O7

  • L. T. Denisova
  • L. A. Irtyugo
  • Yu. F. Kargin
  • V. M. Denisov
  • V. V. Beletskii
Article
  • 42 Downloads

Abstract

Yb2Sn2O7 and Lu2Sn2O7 have been prepared by solid-state reactions, by firing mixtures of Yb2O3 or Lu2O3 and SnO2 at 1473 K, and the molar heat capacity of these compounds (pyrochlore structure) has been determined by differential scanning calorimetry. The C p (T) data have been used to evaluate the thermodynamic properties of the stannates: enthalpy increment, entropy change, and reduced Gibbs energy.

Keywords

ytterbium and lutetium stannates high-temperature heat capacity thermodynamic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, W., Liang, S., Bi, J., et al., Lanthanide stannate pyrochlores Ln2Sn2O7 (Ln = Nd, Sm, Eu, Gd, Yb) nanocrystals: synthesis, characterization, and photocatalytic, Mater. Res. Bull., 2014, vol. 56, pp. 86–91.CrossRefGoogle Scholar
  2. 2.
    Cheng, H., Wang, L., and Lu, Z., A general aqueous sol–gel route to Ln2Sn2O7 nanocrystals, Nanotechnology, 2008, vol. 19, paper 025 706.Google Scholar
  3. 3.
    Kennedy, B.J., Hunter, B.A., and Howard, C.J., Structural and bonding trends in tin pyrochlore oxides, J. Solid State Chem., 1997, vol. 130, pp. 58–65.Google Scholar
  4. 4.
    Vandenbore, M.T., Husson, E., Chatry, J.P., et al., Rare-earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields, J. Raman Spectrosc., 1983, vol. 14, no. 2, pp. 63–71.CrossRefGoogle Scholar
  5. 5.
    Qu, Z., Wan, C., and Pan, W., Thermophysical properties of rare-earth stannates: effect of pyrochlore structure, Acta Mater., 2012, vol. 60, pp. 2939–2949.CrossRefGoogle Scholar
  6. 6.
    Bondah-Jagalu, V. and Bramwell, S.T., Magnetic susceptibility study of the heavy rare-earth stannate pyrochlores, Can. J. Phys., 2001, vol. 79, pp. 1381–1385.CrossRefGoogle Scholar
  7. 7.
    Wrinfrey, C.G. and Tauber, A., Rare earth stannates, R2Sn2O7, J. Am. Chem. Soc., 1961, vol. 83, no. 3, pp. 755–756.CrossRefGoogle Scholar
  8. 8.
    Lian, J., Helean, K.B., Kennedy, B.J., et al., Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation, J. Phys. Chem. B, 2006, vol. 110, pp. 2343–2350.CrossRefGoogle Scholar
  9. 9.
    Chen, Z.J., Xiao, H.Y., Zu, X.T., et al., Structural and bonding properties of stannate pyrochlores: a density functional theory investigation, Comput. Mater. Sci., 2008, vol. 42, pp. 653–658.Google Scholar
  10. 10.
    Srivastava, A.M., Chemical bonding and crystal field splitting of the Er3+ 7F1 level in the pyrochlores Ln2B2O7 (Ln = La3+, Gd3+, Y3+, Lu3+; B = Sn4+, Ti4+), Opt. Mater., 2009, vol. 31, pp. 881–885.Google Scholar
  11. 11.
    Feng, J., Xiao, B., Qu, Z.X., et al., Mechanical properties of rare earth stannate pyrochlores, Appl. Phys. Lett., 2011, vol. 99, pp. 201909-1–201909-3.Google Scholar
  12. 12.
    Brik, M.G. and Srivastava, A.M., Pyrochlore structural chemistry: predicting the lattice constant by the ionic radii and electronegativities of the constituting ions, J. Am. Ceram. Soc., 2012, vol. 95, no. 4, pp. 1434–1460.Google Scholar
  13. 13.
    Solovyov, L.A., Full-profile refinement by derivate difference minimization, J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749.Google Scholar
  14. 14.
    Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365.CrossRefGoogle Scholar
  15. 15.
    Leitner, J., Chuchvalec, P., Sedmidubský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, pp. 27–46.Google Scholar
  16. 16.
    Denisova, L.T., Kargin, Yu.F., and Denisov, V.M., Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets, Phys. Solid State, 2015, vol. 57, no. 8, pp. 1699–1703.Google Scholar
  17. 17.
    Kawabe, I., Lanthanide tetrad effect in the Ln3+ ionic radii and refined spinpairing energy theory, Geochem. J., 1992, vol. 26, pp. 309–335.CrossRefGoogle Scholar
  18. 18.
    Yasnygina, T.A. and Rasskazov, S.V., Tetrad effect in rare earth element distribution patterns: evidence from paleozoic granitoids of the Oka zone, Eastern Sayan, Geochem. Int., 2008, no. 8, pp. 814–825.CrossRefGoogle Scholar
  19. 19.
    Irtyugo, L.A., Denisova, L.T., Kargin, Yu.F., et al., Synthesis and investigation of the heat capacity of Sm2Sn2O7 in the 346–1050 K range, Russ. J. Inorg. Chem., 2016, vol. 61, no. 6, pp. 701–703.Google Scholar
  20. 20.
    Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., Synthesis and high-temperature heat capacity of Gd2Sn2O7, Inorg. Mater., 2016, vol. 52, no. 6, pp. 584–586.Google Scholar
  21. 21.
    Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., High-temperature heat capacity and thermodynamic properties of Tb2Sn2O7, Inorg. Mater., 2017, vol. 53, no. 1, pp. 67–69.Google Scholar
  22. 22.
    Denisova, L.T., Irtyugo, L.A., Beletskii, V.V., et al., High-temperature heat capacity of stannates Pr2Sn2O7 and Nd2B2O7, Phys. Solid State, 2016, vol. 58, no. 7, pp. 1300–1303.Google Scholar
  23. 23.
    Denisova, L.T., Belousova, N.V., Kargin, Yu.F., et al., Ortovanadaty redkozemel’nykh metallov (Rare-Earth Orthovanadates), Krasnoyarsk: Sib. Fed. Univ., 2016. 128 p.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. T. Denisova
    • 1
  • L. A. Irtyugo
    • 1
  • Yu. F. Kargin
    • 2
  • V. M. Denisov
    • 1
  • V. V. Beletskii
    • 1
  1. 1.Institute of Nonferrous Metals and Materials ScienceSiberian Federal UniversityKrasnoyarskRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations