Advertisement

Inorganic Materials

, Volume 53, Issue 5, pp 519–524 | Cite as

The Tl–I phase diagram revisited and the thermodynamic properties of thallium iodides

  • D. M. Babanly
  • L. F. Mashadieva
  • M. B. Babanly
Article
  • 35 Downloads

Abstract

The Tl–I system has been studied using differential thermal analysis, X-ray diffraction, and emf measurements on TlI concentration cells. A more accurate Tl–I phase diagram is presented, according to which the compounds existing in the Tl–I system are TlI, Tl2I3, and TlI3. Thallium monoiodide melts congruently at 715 K and undergoes a polymorphic transformation at 440 K. The other iodides melt peritectically at 535 and 404 K, respectively. In contrast to what was reported previously, no compound of composition Tl3I4 has been obtained. Using experimental emf data, we evaluated relative partial molar thermodynamic functions of the TlI in alloys of the TlI–I system and the standard Gibbs free energy, enthalpy of formation, and standard entropies of TlI3 (−ΔG 298 0 = 142.79 ± 0.73 kJ/mol, −ΔH 298 0 = 135.37 ± 2.85 kJ/mol, and S 298 0 = 263.3 ± 7.4 J/(mol K)) and Tl2I3 (271.39 ± 1.47, 262.40 ± 5.34, and 322.8 ± 13.2).

Keywords

Tl–I system phase diagram thallium iodides emf measurements thermodynamic functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avdienko, K.I., Artyushenko, V.G., Belousov, A.S., et al., Kristally galogenidov talliya: Poluchenie svoistva i primenenie (Preparation, Properties, an Applications of Thallium Halides), Novosibirsk: Nauka, 1989.Google Scholar
  2. 2.
    Burgt, P., Fischer, V., and Borlet, T., WO Patent Application 2010015988, 2010.Google Scholar
  3. 3.
    Lister, G.G., Lawler, J.E., Lapatovich, W.P., and Godyak, V.A., The physics of discharge lamps, Rev. Mod. Phys., 2004, no. 76, pp. 541–98.CrossRefGoogle Scholar
  4. 4.
    Khan, S., Kim, H.J., and Kim, Y.D., Scintillation characterization of thallium-doped lithium iodide crystals, Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 793, pp. 31–34.CrossRefGoogle Scholar
  5. 5.
    Liu, Z., Peters, J.A., Wessels, B.W., Johnsen, S., and Kanatzidis, M.G., Thallous chalcogenide (Tl6I4Se) for radiation detection at X-ray and ray energies, Nucl. Instrum. Methods Phys. Res., Sect. A, 2011, vol. 659, no. 1, pp. 333–335.CrossRefGoogle Scholar
  6. 6.
    Nguyen, S.L., Malliakas, C.D., Peters, J.A., Liu, Z., Im, J., Li-Dong, Zhao, Sebastian, M., Jin, H., Hao, Li, Johnsen, S., Wessels, B.W., Freeman, A.J., and Kanatzidis, M.G., Photoconductivity in Tl6SI4: a novel semiconductor for hard radiation detection, Chem. Mater., 2013, vol. 25, no. 14, pp. 2868–2877.CrossRefGoogle Scholar
  7. 7.
    Binary Alloy Phase Diagrams, Massalski, T.B., Ed., Materials Park: ASM International, 1990, 2nd ed.Google Scholar
  8. 8.
    Cubicciotti, D., The thallium–iodine phase diagram, J. Less-Common Met., 1971, vol. 24, no. 2, pp. 201–209.CrossRefGoogle Scholar
  9. 9.
    Fiorani, M. and Bombi, G.G., The Tl–I phase diagram, Ber. Bunsen–Ges. Phys. Chem., 1965, vol. 69, no. 7, p. 605.CrossRefGoogle Scholar
  10. 10.
    Rolsten, R.F., Iodide Metals and Metal Iodides, New York: Wiley, 1961.Google Scholar
  11. 11.
    Tebbe, K.F. and Georgy, U., Die Kristallstrukturen von Rubidiiumtriodid und Thalliumtriiodid, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1986, vol. 42, pp. 1675–1678.CrossRefGoogle Scholar
  12. 12.
    Shiojiri, M., Kaito, C., Saito, Y., Murakami, M., and Kawamoto, J., Growth of thallium iodide crystals in silica hydrogels, J. Cryst. Growth, 1978, vol. 43, pp. 61–70.CrossRefGoogle Scholar
  13. 13.
    Baza dannykh “Termicheskie konstanty veshchestv”. Elektronnaya versiya (Thermal Constants of Substances Database, Electronic Version), Iorish, V.S. and Yungman, V.S., Eds., 2006. http://www/chem.msu.su/cgibin/tkv.Google Scholar
  14. 14.
    Kubaschewski, O., Alcock, C.B., and Spencer, P.J., Materials Thermochemistry, Oxford: Pergamon, 1993.Google Scholar
  15. 15.
    Morachevskii, A.G., Voronin, G.F., Geiderikh, V.A., and Kutsenok, I.B., Elektrokhimicheskie metody issledovaniya v termodinamike metallicheskikh sistem (Electrochemical Characterization Techniques in Thermodynamic Studies of Metallic Systems), Moscow: ITsK Akademkniga, 2003.Google Scholar
  16. 16.
    Babanly, M.B. and Yusibov, Yu.A., Elektrokhimicheskie metody v termodinamike neorganicheskikh sistem (Electrochemical Characterization Techniques in Thermodynamic Studies of Inorganic Systems), Baku: ELM, 2011.Google Scholar
  17. 17.
    Gordon, A.J. and Ford, R.A., A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.Google Scholar
  18. 18.
    Kornilov, A.N., Stepina, L.B., and Sokolov, V.A., Recommendations on compact representation of experimental data in reports on thermochemical and thermodynamic studies, Zh. Fiz. Khim., 1972, vol. 46, no. 11, pp. 2974–2979.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. M. Babanly
    • 1
  • L. F. Mashadieva
    • 1
  • M. B. Babanly
    • 1
  1. 1.Nagiyev Institute of Catalysis and Inorganic ChemistryAcademy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations