Skip to main content
Log in

Synthesis, structure, and properties of a Au/MnO x –CeO2 nanocatalyst for low-temperature oxidation of carbon monoxide

  • Published:
Inorganic Materials Aims and scope

Abstract

We have synthesized Au/MnO x –CeO2 nanocatalysts for the low-temperature oxidation of carbon monoxide. Gold nanoparticles applied by the deposition precipitation (DP) method were used as an active phase. The composition, structure, and textural characteristics of the materials and the charge state of the components of the catalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, highresolution transmission electron microscopy, inductively coupled plasma mass spectrometry, and low-temperature nitrogen adsorption measurements. The carbon monoxide concentration in the catalytic oxidation products was determined by gas chromatography. The influence of calcination temperature on the charge state of the components of the surface layer of Au/ MnOx–CeO2 and the catalytic activity of the materials was examined. The catalytic activity of the materials was shown to be determined to a significant degree by the Mn3+, Au3+, and weakly bound oxygen concentrations in the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kipnis, M.A., Volnina, E.A., Ezhov, A.A., and Ivanov, V.K., Preferential oxidation of carbon monoxide on supported gold catalysts, Kinet. Catal., 2013, vol. 54, no. 3, pp. 358–368.

    Article  CAS  Google Scholar 

  2. Feng, X., Duan, X., Qian, G., Zhou, X., Chen, D., and Yuan, W., Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2, J. Catal., 2014, vol. 317, pp. 99–104.

    Article  CAS  Google Scholar 

  3. Tabakova, T., Ilieva, L., Ivanov, I., Zanella, R., Sobczak, J.W., Lisowski, W., Kaszkur, Z., and Andreeva, D., Influence of the preparation method and dopants nature on the WGS activity of gold catalysts supported on doped by transition metals ceria, Appl. Catal., B, 2013, vols. 136–137, pp. 70–80.

    Article  Google Scholar 

  4. Nikolaev, S.A., Smirnov, V.V., Vasilkov, A.Yu., and Podshibikhin, V.L., Synergism of the catalytic effect of nanosized gold–nickel catalysts in the reaction of selective acetylene hydrogenation to ethylene, Kinet. Catal., 2010, vol. 51, pp. 375–379.

    Article  CAS  Google Scholar 

  5. Fonseca, A.A., Fisher, J.M., Ozkaya, D., et al., Ceria–zirconia supported Au as highly active low temperature water–gas shift catalysts, Top. Catal., 2007, vol. 44, nos. 1–2, pp. 223–235.

    Article  CAS  Google Scholar 

  6. Haruta, M., Yamada, N., Kobbayashi, T., and Iijjmas, S., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and carbon monoxide, J. Catal., 1989, vol. 115, pp. 301–309.

    Article  CAS  Google Scholar 

  7. Liotta, L.F., Di Carlo, G., Pantaleo, G., and Venezia, A.M., Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: support effect, Catal. Today, 2010, vol. 158, pp. 56–65.

    Article  CAS  Google Scholar 

  8. Zhang, R.-R., Ren, L.-H., and Lu, A.-H., Influence of pretreatment atmospheres on the activity of Au/CeO2 catalyst for low-temperature CO oxidation, Catal. Commun., 2011, vol. 13, pp. 18–21.

    Article  Google Scholar 

  9. Smirnov, M.Yu., Vovk, E.I., Gerasimova, E.Yu., and Bukhtiyarov, V.I., Comparison of the thermal stability of gold nanoparticles supported on Al2O3 and Fe2O3 in a reaction medium, Izv. Akad. Nauk, Ser. Khim., 2014, no. 12, pp. 2733–2737.

    Google Scholar 

  10. Avgouropoulos, G., Manzoli, M., Boccuzzi, F., Tabakova, T., Papavasiliou, J., Ioannides, T., and Idakiev, V., Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential COoxidation reaction, J. Catal., 2008, vol. 256, pp. 237–247.

    Article  CAS  Google Scholar 

  11. Tikhomirov, K., Kröcher, O., Elsener, M., and Wokaun, A., MnOx–CeO2 mixed oxides for the lowtemperature oxidation of diesel soot, Appl. Catal., B, 2006, no. 64, pp. 72–78.

    Article  CAS  Google Scholar 

  12. Tang, X., Shen, W., and Xu, Y., Promoting effect of copper on the catalytic activity of MnOx–CeO2 mixed oxide for complete oxidation of benzene, Chem. Eng. J., 2008, no. 144, pp. 175–180.

    Article  CAS  Google Scholar 

  13. Liberman, E.Yu., Kleusov, B.S., Mikhailichenko, A.I., and Kon’kova, T.V., Catalytic activity of nanostructured MnOx–CeO2 for carbon monoxide oxidation, Khim. Prom–st Segodnya, 2013, no. 6, pp. 6–13.

    Google Scholar 

  14. Liberman, E.Yu., Naumkin, A.V., Mikhailichenko, A.I., et al., Au/Ce0.72Zr0.18Pr0.1O2 nanodisperse catalyst for oxidation of carbon monoxide, Russ. J. Phys. Chim., 2016, no. 1, pp. 166–172.

    Article  Google Scholar 

  15. Gulyaev, R.V., Kibis, L.S., Stonkus, O.A., et al., Synergetic effect in PdAu/CeO2 catalysts for the low-temperature oxidation of CO, J. Struct. Chem., 2011, vol. 52, suppl. 1, pp. S123–S136.

    Article  Google Scholar 

  16. Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Akademkniga, 2004.

    Google Scholar 

  17. Zhang, H., Wang, J., Cao, Y., Wang, Y., Gong, M., and Chen, Y., Effect of Y on improving the thermal stability of MnOx–CeO2 catalysts for diesel soot oxidation, Chin. J. Catal., 2015, vol. 36, no. 8, pp. 1333–1341.

    Article  CAS  Google Scholar 

  18. Xiong, Y., Tang, C., Yao, X., Zhang, L., Li, L., Wang, X., Deng, Y., Gao, F., and Dong, L., Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3, Appl. Catal., A, 2015, vol. 495, pp. 206–216.

    Article  CAS  Google Scholar 

  19. Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., and Powell, C.J., NIST X-Ray Photoelectron Spectroscopy Database, Version 4.1, Gaithersburg: National Inst. of Standards and Technology, 2012. http:// srdata.nist.gov/xps/.

    Google Scholar 

  20. Tang, X., Chen, J., Li, Y., Xu, Y., and Chen, W., Complete oxidation of formaldehyde over Ag/MnOx–CeO2 catalysts, Chem. Eng. J., 2006, vol. 118, pp. 119–125.

    Article  CAS  Google Scholar 

  21. Sudarsanam, P., Mallesham Reddy, P.S., Großmann, D., and Grünert, W., Nano-Au/CeO2 catalysts for CO oxidation: influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity, Appl. Catal., B, 2014, vol. 144, pp. 900–908.

    Article  CAS  Google Scholar 

  22. Li, Q., Zhang, Y., Chen, G., Fan, J., Lan, H., and Yang, Y., Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: effect of preparation conditions on surface composition and activity, Catal. J. Catal., 2010, vol. 273, pp. 167–176.

    Article  CAS  Google Scholar 

  23. Concepcion, P., Carrettin, S., and Corma, A., Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions, Appl. Catal., A, 2006, vol. 307, pp. 42–45.

    Article  CAS  Google Scholar 

  24. Lu-Cun Wang, Qian Liu, Xin-Song Huang, Yong-Mei Liu, Yong Cao, and Kang-Nian Fan, Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation, Appl. Catal., B, 2009, vol. 88, pp. 204–212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Liberman.

Additional information

Original Russian Text © E.Yu. Liberman, A.V. Naumkin, M.V. Tsodikov, A.I. Mikhailichenko, T.V. Kon’kova, V.N. Grunskii, V.A. Kolesnikov, A.Yu. Pereyaslavtsev, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 4, pp. 402–409.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liberman, E.Y., Naumkin, A.V., Tsodikov, M.V. et al. Synthesis, structure, and properties of a Au/MnO x –CeO2 nanocatalyst for low-temperature oxidation of carbon monoxide. Inorg Mater 53, 406–412 (2017). https://doi.org/10.1134/S0020168517040112

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517040112

Keywords

Navigation