Kasavina, B.S. and Torbenko, V.P., Zhizn’ kostnoi tkani (The Life of Bone Tissue), Moscow: Nauka, 1979, 2nd ed.
Dorozhkin, S.V., Medical application of calcium orthophosphate bioceramics, BIO, 2011, vol. 1, pp. 1–51.
Article
Google Scholar
Elliot, J.C., Structure, Chemistry of Apatites and Other Calcium Orthophosphates, Amsterdam: Elsevier Science, 1994.
Zakharov, N.A., Sentsov, M.Yu., Chalykh, A.E., et al., The influence of methylcellulose (MC) on solubility of calcium hydroxyapatite (HA) crystals in HA/MC nanocomposites, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, pp. 89–99.
CAS
Article
Google Scholar
Zakharov, N.A., Ezhova, Zh.A., Koval, E.M., et al., Hydroxyapatite–carboxymethyl cellulose nanocomposite biomaterial, Inorg. Mater., 2005, vol. 41, no. 5, pp. 509–515.
CAS
Article
Google Scholar
Zakharov, N.A., Klyuev, V.A., Sentsov, M.Yu., et al., Thermal activation currents of biocompatible nanocrystalline calcium hydroxyapatite Ca10(PO4)6(OH)2, Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 4, pp. 844–848.
Article
Google Scholar
Wang, R.Z., Cui, F.Z., Lu, H.B., et al., Synthesis of nanophase hydroxyapatite/collagen composite, J. Mater. Sci. Lett., 1995, vol. 14, pp. 490–492.
CAS
Article
Google Scholar
Du, C., Cui, F.Z., Zhu, X.D., et al., Three-dimensional nano HAp/collagen matrix loading with osteogenic cells in organ culture, J. Biomed. Mater. Res., 1999, vol. 44, pp. 407–415.
CAS
Article
Google Scholar
Chang, M.C., Ikoma, T., and Kikuchi, M., Preparation of a porous hydroxyapatite collagen nanocomposite using glutaraldehyde as a cross linking agent, J. Mater. Sci. Lett., 2002, vol. 20, no. 13, pp. 1129–1131.
Google Scholar
Mann, S. and Ozin, G.A., Synthesis of inorganic materials with complex form, Nature, 1996, vol. 382, pp. 313–318.
CAS
Article
Google Scholar
Mann, S., Archibald, D.D., Didymus, J.M., et al., Crystallization at inorganic–organic interfaces: biominerals and biomimetic synthesis, Science, 1993, vol. 261, pp. 1286–1292.
CAS
Article
Google Scholar
Muthukumar, M. and Ober, C.K., Self-assembly at all scales, Science, 1997, vol. 277, pp. 1225–1232.
CAS
Article
Google Scholar
Stupp, S.I. and Braun, P.V., Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors, Science, 1997, vol. 277, pp. 1242–1248.
CAS
Google Scholar
Chang, M.C., Ko, C.C., and Douglas, W.H., Modification of hydroxyapatite/gelatin composite by polyvinyl alcohol, Biomaterials, 2003, vol. 24, pp. 2723–2727.
Google Scholar
Shen, Y., Johnson, M.A., and Martin, D.C., Microstructural characterization of Bombyx mori silk fibers, Macromolecules, 1998, vol. 31, no. 25, pp. 8857–8864.
CAS
Article
Google Scholar
Sell, S.A., Wolfe, P.S., Garg, K., et al., The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues, Polymers, 2010, vol. 2, no. 4, pp. 522–553.
CAS
Article
Google Scholar
Meinhart, J., Fussenegger, M., and Höbling, W., Stabilization of fibrin–chondrocyte constructs for cartilage reconstruction, Ann. Plast. Surg., 1999, vol. 42, no. 6, pp. 673–678.
CAS
Article
Google Scholar
Sahni, A. and Francis, C.W., Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation, Blood, 2000, vol. 96, no. 12, pp. 3772–3778.
CAS
Google Scholar
Park, K.H., Kim, H., Moon, S., et al., Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering, J. Biosci. Bioeng., 2009, vol. 108, no. 6, pp. 530–537.
CAS
Article
Google Scholar
Kalbermatten, D.F., Kingham, P.J., Mahay, D., et al., Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit, J. Plast. Reconstr. Aesthet. Surg., 2008, vol. 61, no. 6, pp. 669–675.
CAS
Article
Google Scholar
Gorodetsky, R., Clark, R.A., An, J., et al., Fibrin microbeads (FMB) as biodegradable carriers for culturing cells and for accelerating wound healing, J. Invest. Dermatol., 1999, vol. 112, no. 6, pp. 866–872.
CAS
Article
Google Scholar
Rajangam, T., Paik, H.J., and An, S., Development of fibrinogen microspheres as a biodegradable carrier for tissue engineering, Bio. Chip. J., 2011, vol. 5, no. 2, pp. 175–183.
CAS
Google Scholar
Rajangam, T., Paik, H., and An, S., Fabricating fibrinogen microfibers with aligned nanostructure, as biodegradable threads for tissue engineering, Bull. Korean. Chem. Soc., 2012, vol. 33, no. 6, pp. 2075–2078.
CAS
Article
Google Scholar
Swartz, D.D., Russell, J.A., and Andreadis, S.T., Engineering of fibrin-based functional and implantable small-diameter blood vessels, Am. J. Physiol. Heart. Circ. Physiol., 2005, vol. 288, no. 3, pp. H1451–H1460.
CAS
Article
Google Scholar
Rejinold, N.S., Muthunarayanan, M., Deepa, N., et al., Development of novel fibrinogen nanoparticles by two-step co-acervation method, Int. J. Biol. Macromol., 2010, vol. 47, no. 1, pp. 37–43.
CAS
Article
Google Scholar
Wnek, G.E., Carr, M.E., Simpson, D.G., et al., Electrospinning of nanofiber fibrinogen structures, Nano Lett., 2002, vol. 3, no. 2, pp. 213–216.
Article
Google Scholar
Rowe, S.L., Lee, S., and Stegemann, J.P., Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels, Acta Biomater., 2007, vol. 3, no. 1, pp. 59–67.
CAS
Article
Google Scholar
Nemoto, R., Nakamura, S., Isobe, T., et al., Direct synthesis of hydroxyapatite–silk fibroin nano-composite sol via a mechanochemical route, J. Sol–Gel Sci. Technol., 2001, vol. 21, pp. 7–12.
CAS
Article
Google Scholar
Takeuchi, A., Ohtsuki, C., Kamitakahara, M., et al., Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin, J. Mater. Sci.: Mater. Med., 2005, vol. 2, no. 4, pp. 373–378.
CAS
Google Scholar
Wang, L., Nemoto, R., and Senna, M., Three-dimensional porous network structure developed in hydroxyapatite-based nanocomposites containing enzyme pretreated silk fibroin, J. Mater. Sci.–Mater., 2004, vol. 6, pp. 91–98.
CAS
Google Scholar
Chen, J., Altman, G.H., Karageorgiou, V., et al., Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers, J. Biomed. Mater. Res. A, 2003, vol. 67, no. 2, pp. 559–570.
Article
Google Scholar
Um, I., Kweon, H., Park, Y., et al., Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid, Int. J. Biol. Macromol., 2001, vol. 29, pp. 91–97.
CAS
Article
Google Scholar
Changdheng, L., Yue, H., Wei, S., et al., Kinetics of hydroxyapatite precipitation at pH 10 to 11, Biomaterials, 2001, vol. 22, pp. 301–306.
Article
Google Scholar
Gorelik, S.S., Skakov, Yu.A., and Rastorguev, L.N., Rentgenograficheskii i elektronno-opticheskii analiz (Xray Diffraction and Electron-Optical Analysis), Moscow: Mosk. Inst. Stali i Splavov, 2002.
Google Scholar
Powder Diffraction File (Inorganic Phases), Newton Square: Joint Committee on Powder Diffraction Standards (JCPDS)–International Centre of Diffraction Data, 1980, file no. 9-432.
Freddi, G., Tsukada, M., and Beretta, S., Structure and properties of silk fibroin/polyacrylamide blend films, J. Appl. Polym. Sci., 1999, vol. 71, pp. 1563–1571.
CAS
Article
Google Scholar
Hench, L.L., Bioceramics: from concept to clinic, J. Am. Ceram. Soc., 1991, vol. 74, no. 7, pp. 1487–1510.
CAS
Article
Google Scholar
Tsukada, M., Goto, Y., Freddi, G., et al., Chemical modification of silk with aromatic acid anhydrides, J. Appl. Polym. Sci., 1992, vol. 45, no. 7, pp. 1189–1194.
CAS
Article
Google Scholar
Kong, X.D., Cui, F.Z., Wang, M.X., et al., Silk fibroin regulated mineralization of hydroxyapatite nanocrystals, J. Cryst. Growth, 2004, vol. 270, pp. 197–202.
CAS
Article
Google Scholar
Cai, Y., Jin, J., Mei, D., et al., Effect of silk sericin on assembly hydroxyapatite nanocrystals into enamel prism-like structure, J. Mater. Chem., 2009, vol. 18, pp. 5751–5758.
Article
Google Scholar
Tanahashi, M. and Matsuda, T., Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid, J. Biomed. Mater. Res., 1997, vol. 34, pp. 305–315.
CAS
Article
Google Scholar
Chen, F., Wang, Z.-C., and Lin, C.-J., Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials, Mater. Lett., 2002, vol. 57, pp. 858–861.
CAS
Article
Google Scholar
Rey, C., Miguel, J.L., Faccini, L., et al., Hydroxyl groups in bone mineral, Bone, 1995, vol. 16, no. 5, pp. 583–586.
CAS
Article
Google Scholar
Ramay, H.R. and Zhang, M., Preparation of porous hydroxyapatite scaffolds by combination of the gelcasting and polymer sponge methods, Biomaterials, 2003, vol. 24, pp. 3293–3302.
CAS
Article
Google Scholar
Vignoles, M., Bonel, G., Holcomb, D.W., et al., Influence of preparation conditions on the composition of type B carbonated hydroxyapatite and on the localization of the carbonate ions, Calcif. Tissue Int., 1989, vol. 45, pp. 157–164.
Article
Google Scholar
Mezahi, F.Z., Oudadesse, H., Harabi, A., et al., Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment. Comparison to synthetic hydroxyapatite, J. Therm. Anal. Calorim., 2009, vol. 95, no. 1, pp. 21–29.
CAS
Article
Google Scholar
Moraes, M.A., Nogueira, G.M., Weska, R.F., et al., Preparation and characterization of insoluble silk fibroin/chitosan blend films, Polymers, 2010, vol. 2, pp. 719–727.
Article
Google Scholar
Zhao, Y., Yan, X., Ding, F., et al., The effects of different sterilization methods on silk fibroin, J. Biomed. Sci. Eng., 2011, vol. 4, pp. 397–402.
CAS
Article
Google Scholar
Gabriel, S., Perrone, G.G., Gary, G., et al., The use of silk-based devices for fracture fixation, Nature Commun., 2014, vol. 3, pp. 1–9.
Google Scholar