Skip to main content

Synthesis and properties of calcium hydroxyapatite/silk fibroin organomineral composites

Abstract

The coprecipitation of calcium hydroxyapatite (HA) (Ca10(PO4)6(OH)3) and silk fibroin (SF) from an aqueous solution in the Ca(NO3)2–(NH4)2HPO4–NH3–H2O–SF system has been used to synthesize HA/SF organomineral composites based on nanocrystalline HA, containing 2, 5, and 10 wt % SF. The synthesis products were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, scanning electron microscopy, and electron spectroscopy for chemical analysis.

This is a preview of subscription content, access via your institution.

References

  1. Kasavina, B.S. and Torbenko, V.P., Zhizn’ kostnoi tkani (The Life of Bone Tissue), Moscow: Nauka, 1979, 2nd ed.

  2. Dorozhkin, S.V., Medical application of calcium orthophosphate bioceramics, BIO, 2011, vol. 1, pp. 1–51.

    Article  Google Scholar 

  3. Elliot, J.C., Structure, Chemistry of Apatites and Other Calcium Orthophosphates, Amsterdam: Elsevier Science, 1994.

  4. Zakharov, N.A., Sentsov, M.Yu., Chalykh, A.E., et al., The influence of methylcellulose (MC) on solubility of calcium hydroxyapatite (HA) crystals in HA/MC nanocomposites, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, pp. 89–99.

    CAS  Article  Google Scholar 

  5. Zakharov, N.A., Ezhova, Zh.A., Koval, E.M., et al., Hydroxyapatite–carboxymethyl cellulose nanocomposite biomaterial, Inorg. Mater., 2005, vol. 41, no. 5, pp. 509–515.

    CAS  Article  Google Scholar 

  6. Zakharov, N.A., Klyuev, V.A., Sentsov, M.Yu., et al., Thermal activation currents of biocompatible nanocrystalline calcium hydroxyapatite Ca10(PO4)6(OH)2, Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 4, pp. 844–848.

    Article  Google Scholar 

  7. Wang, R.Z., Cui, F.Z., Lu, H.B., et al., Synthesis of nanophase hydroxyapatite/collagen composite, J. Mater. Sci. Lett., 1995, vol. 14, pp. 490–492.

    CAS  Article  Google Scholar 

  8. Du, C., Cui, F.Z., Zhu, X.D., et al., Three-dimensional nano HAp/collagen matrix loading with osteogenic cells in organ culture, J. Biomed. Mater. Res., 1999, vol. 44, pp. 407–415.

    CAS  Article  Google Scholar 

  9. Chang, M.C., Ikoma, T., and Kikuchi, M., Preparation of a porous hydroxyapatite collagen nanocomposite using glutaraldehyde as a cross linking agent, J. Mater. Sci. Lett., 2002, vol. 20, no. 13, pp. 1129–1131.

    Google Scholar 

  10. Mann, S. and Ozin, G.A., Synthesis of inorganic materials with complex form, Nature, 1996, vol. 382, pp. 313–318.

    CAS  Article  Google Scholar 

  11. Mann, S., Archibald, D.D., Didymus, J.M., et al., Crystallization at inorganic–organic interfaces: biominerals and biomimetic synthesis, Science, 1993, vol. 261, pp. 1286–1292.

    CAS  Article  Google Scholar 

  12. Muthukumar, M. and Ober, C.K., Self-assembly at all scales, Science, 1997, vol. 277, pp. 1225–1232.

    CAS  Article  Google Scholar 

  13. Stupp, S.I. and Braun, P.V., Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors, Science, 1997, vol. 277, pp. 1242–1248.

    CAS  Google Scholar 

  14. Chang, M.C., Ko, C.C., and Douglas, W.H., Modification of hydroxyapatite/gelatin composite by polyvinyl alcohol, Biomaterials, 2003, vol. 24, pp. 2723–2727.

    Google Scholar 

  15. Shen, Y., Johnson, M.A., and Martin, D.C., Microstructural characterization of Bombyx mori silk fibers, Macromolecules, 1998, vol. 31, no. 25, pp. 8857–8864.

    CAS  Article  Google Scholar 

  16. Sell, S.A., Wolfe, P.S., Garg, K., et al., The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues, Polymers, 2010, vol. 2, no. 4, pp. 522–553.

    CAS  Article  Google Scholar 

  17. Meinhart, J., Fussenegger, M., and Höbling, W., Stabilization of fibrin–chondrocyte constructs for cartilage reconstruction, Ann. Plast. Surg., 1999, vol. 42, no. 6, pp. 673–678.

    CAS  Article  Google Scholar 

  18. Sahni, A. and Francis, C.W., Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation, Blood, 2000, vol. 96, no. 12, pp. 3772–3778.

    CAS  Google Scholar 

  19. Park, K.H., Kim, H., Moon, S., et al., Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering, J. Biosci. Bioeng., 2009, vol. 108, no. 6, pp. 530–537.

    CAS  Article  Google Scholar 

  20. Kalbermatten, D.F., Kingham, P.J., Mahay, D., et al., Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit, J. Plast. Reconstr. Aesthet. Surg., 2008, vol. 61, no. 6, pp. 669–675.

    CAS  Article  Google Scholar 

  21. Gorodetsky, R., Clark, R.A., An, J., et al., Fibrin microbeads (FMB) as biodegradable carriers for culturing cells and for accelerating wound healing, J. Invest. Dermatol., 1999, vol. 112, no. 6, pp. 866–872.

    CAS  Article  Google Scholar 

  22. Rajangam, T., Paik, H.J., and An, S., Development of fibrinogen microspheres as a biodegradable carrier for tissue engineering, Bio. Chip. J., 2011, vol. 5, no. 2, pp. 175–183.

    CAS  Google Scholar 

  23. Rajangam, T., Paik, H., and An, S., Fabricating fibrinogen microfibers with aligned nanostructure, as biodegradable threads for tissue engineering, Bull. Korean. Chem. Soc., 2012, vol. 33, no. 6, pp. 2075–2078.

    CAS  Article  Google Scholar 

  24. Swartz, D.D., Russell, J.A., and Andreadis, S.T., Engineering of fibrin-based functional and implantable small-diameter blood vessels, Am. J. Physiol. Heart. Circ. Physiol., 2005, vol. 288, no. 3, pp. H1451–H1460.

    CAS  Article  Google Scholar 

  25. Rejinold, N.S., Muthunarayanan, M., Deepa, N., et al., Development of novel fibrinogen nanoparticles by two-step co-acervation method, Int. J. Biol. Macromol., 2010, vol. 47, no. 1, pp. 37–43.

    CAS  Article  Google Scholar 

  26. Wnek, G.E., Carr, M.E., Simpson, D.G., et al., Electrospinning of nanofiber fibrinogen structures, Nano Lett., 2002, vol. 3, no. 2, pp. 213–216.

    Article  Google Scholar 

  27. Rowe, S.L., Lee, S., and Stegemann, J.P., Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels, Acta Biomater., 2007, vol. 3, no. 1, pp. 59–67.

    CAS  Article  Google Scholar 

  28. Nemoto, R., Nakamura, S., Isobe, T., et al., Direct synthesis of hydroxyapatite–silk fibroin nano-composite sol via a mechanochemical route, J. Sol–Gel Sci. Technol., 2001, vol. 21, pp. 7–12.

    CAS  Article  Google Scholar 

  29. Takeuchi, A., Ohtsuki, C., Kamitakahara, M., et al., Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin, J. Mater. Sci.: Mater. Med., 2005, vol. 2, no. 4, pp. 373–378.

    CAS  Google Scholar 

  30. Wang, L., Nemoto, R., and Senna, M., Three-dimensional porous network structure developed in hydroxyapatite-based nanocomposites containing enzyme pretreated silk fibroin, J. Mater. Sci.–Mater., 2004, vol. 6, pp. 91–98.

    CAS  Google Scholar 

  31. Chen, J., Altman, G.H., Karageorgiou, V., et al., Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers, J. Biomed. Mater. Res. A, 2003, vol. 67, no. 2, pp. 559–570.

    Article  Google Scholar 

  32. Um, I., Kweon, H., Park, Y., et al., Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid, Int. J. Biol. Macromol., 2001, vol. 29, pp. 91–97.

    CAS  Article  Google Scholar 

  33. Changdheng, L., Yue, H., Wei, S., et al., Kinetics of hydroxyapatite precipitation at pH 10 to 11, Biomaterials, 2001, vol. 22, pp. 301–306.

    Article  Google Scholar 

  34. Gorelik, S.S., Skakov, Yu.A., and Rastorguev, L.N., Rentgenograficheskii i elektronno-opticheskii analiz (Xray Diffraction and Electron-Optical Analysis), Moscow: Mosk. Inst. Stali i Splavov, 2002.

    Google Scholar 

  35. Powder Diffraction File (Inorganic Phases), Newton Square: Joint Committee on Powder Diffraction Standards (JCPDS)–International Centre of Diffraction Data, 1980, file no. 9-432.

  36. Freddi, G., Tsukada, M., and Beretta, S., Structure and properties of silk fibroin/polyacrylamide blend films, J. Appl. Polym. Sci., 1999, vol. 71, pp. 1563–1571.

    CAS  Article  Google Scholar 

  37. Hench, L.L., Bioceramics: from concept to clinic, J. Am. Ceram. Soc., 1991, vol. 74, no. 7, pp. 1487–1510.

    CAS  Article  Google Scholar 

  38. Tsukada, M., Goto, Y., Freddi, G., et al., Chemical modification of silk with aromatic acid anhydrides, J. Appl. Polym. Sci., 1992, vol. 45, no. 7, pp. 1189–1194.

    CAS  Article  Google Scholar 

  39. Kong, X.D., Cui, F.Z., Wang, M.X., et al., Silk fibroin regulated mineralization of hydroxyapatite nanocrystals, J. Cryst. Growth, 2004, vol. 270, pp. 197–202.

    CAS  Article  Google Scholar 

  40. Cai, Y., Jin, J., Mei, D., et al., Effect of silk sericin on assembly hydroxyapatite nanocrystals into enamel prism-like structure, J. Mater. Chem., 2009, vol. 18, pp. 5751–5758.

    Article  Google Scholar 

  41. Tanahashi, M. and Matsuda, T., Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid, J. Biomed. Mater. Res., 1997, vol. 34, pp. 305–315.

    CAS  Article  Google Scholar 

  42. Chen, F., Wang, Z.-C., and Lin, C.-J., Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials, Mater. Lett., 2002, vol. 57, pp. 858–861.

    CAS  Article  Google Scholar 

  43. Rey, C., Miguel, J.L., Faccini, L., et al., Hydroxyl groups in bone mineral, Bone, 1995, vol. 16, no. 5, pp. 583–586.

    CAS  Article  Google Scholar 

  44. Ramay, H.R. and Zhang, M., Preparation of porous hydroxyapatite scaffolds by combination of the gelcasting and polymer sponge methods, Biomaterials, 2003, vol. 24, pp. 3293–3302.

    CAS  Article  Google Scholar 

  45. Vignoles, M., Bonel, G., Holcomb, D.W., et al., Influence of preparation conditions on the composition of type B carbonated hydroxyapatite and on the localization of the carbonate ions, Calcif. Tissue Int., 1989, vol. 45, pp. 157–164.

    Article  Google Scholar 

  46. Mezahi, F.Z., Oudadesse, H., Harabi, A., et al., Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment. Comparison to synthetic hydroxyapatite, J. Therm. Anal. Calorim., 2009, vol. 95, no. 1, pp. 21–29.

    CAS  Article  Google Scholar 

  47. Moraes, M.A., Nogueira, G.M., Weska, R.F., et al., Preparation and characterization of insoluble silk fibroin/chitosan blend films, Polymers, 2010, vol. 2, pp. 719–727.

    Article  Google Scholar 

  48. Zhao, Y., Yan, X., Ding, F., et al., The effects of different sterilization methods on silk fibroin, J. Biomed. Sci. Eng., 2011, vol. 4, pp. 397–402.

    CAS  Article  Google Scholar 

  49. Gabriel, S., Perrone, G.G., Gary, G., et al., The use of silk-based devices for fracture fixation, Nature Commun., 2014, vol. 3, pp. 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zakharov.

Additional information

Original Russian Text © N.A. Zakharov, L.I. Demina, A.D. Aliev, M.R. Kiselev, V.V. Matveev, M.A. Orlov, T.V. Zakharova, N.T. Kuznetsov, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 3, pp. 322–332.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zakharov, N.A., Demina, L.I., Aliev, A.D. et al. Synthesis and properties of calcium hydroxyapatite/silk fibroin organomineral composites. Inorg Mater 53, 333–342 (2017). https://doi.org/10.1134/S0020168517030128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517030128

Keywords

  • calcium hydroxyapatite
  • silk fibroin
  • composite materials
  • synthesis
  • properties