Properties of iron-containing nanohydroxyapatite-based composites

Abstract

The paramagnetic properties of compounds resulting from the synthesis of nanohydroxyapatite in the presence of Fe(III) ions have been studied by electron paramagnetic resonance, Mössbauer spectroscopy, and magnetochemistry. Based on the obtained results on the mechanism of the reaction between an orthophosphoric acid solution and an aqueous calcium hydroxide suspension, we have found conditions for incorporating Fe(III) impurity ions into hydroxyapatite. We have studied samples differing in the sequence in which reagents were mixed and in hydroxyapatite crystallite formation conditions. It has been shown that, in all instances, the composition and properties of the iron-containing phases in the composites depend significantly on both synthesis and heat treatment conditions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Gupta, A.K. and Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 2005, vol. 26, pp. 3995–4021.

    CAS  Article  Google Scholar 

  2. 2.

    Salata, O.V., Applications of nanoparticles in biology and medicine, J. Nanobiotechnol., 2004, vol. 2, no. 3, pp. 1–6.

    Google Scholar 

  3. 3.

    Albanese, A., Tang, P.S., and Chan, W.S., The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annu. Rev. Biomed. Eng., 2012, vol. 14, pp. 1–16.

    CAS  Article  Google Scholar 

  4. 4.

    Kuzmann, E., Garg, V.K., Oliveira, A.C., et al., Mössbauer study of the effect of pH on Fe valence in ironpolygalacturonate as a medicine for human anaemia, Radiat. Phys. Chem., 2015, vol. 107, pp. 195–198.

    CAS  Article  Google Scholar 

  5. 5.

    Kaushik, A., Jayant, R.D., Sagar, V., and Nair, M., The potential of magneto-electric nanocarriers for drug delivery, Expert. Opin. Drug. Delivery, 2014, vol. 11, no. 10, pp. 1635–1646.

    CAS  Article  Google Scholar 

  6. 6.

    Dash, N.A., Ghosal, P.M., Mahipal, Y.K., et al., The use of magnetite nanoparticles in applied medicine, J. Mech. Eng. Res. Devel., 2014, vol. 37, pp. 15–18.

    Google Scholar 

  7. 7.

    Veiseh, O., Gunn, J.W., and Zhang, M., Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv. Drug. Deliv. Rev., 2010, vol. 63, pp. 284–304.

    Article  Google Scholar 

  8. 8.

    Chomouckaa, J., Drbohlavovaa, J., Huskab, D., et al., Magnetic nanoparticles and targeted drug delivering, Pharmacol. Res., 2010, vol. 62, pp. 144–149.

    Article  Google Scholar 

  9. 9.

    Mahmoudi, M., Sant, S., Wang, B., et al., Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy, Adv. Drug. Deliv. Rev., 2011, vol. 63, pp. 24–46.

    CAS  Article  Google Scholar 

  10. 10.

    Hergt, R., Dutz, S., Muller, R., and Zeisberger, M., Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, J. Phys. Condens. Matter, 2006, vol. 18, no. 38, pp. 2919–2934.

    Article  Google Scholar 

  11. 11.

    Hergt, R., Dutz, S., and Roder, M., Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia, J. Phys. Condens. Matter, 2008, vol. 20, no. 38, pp. 385214–385226.

    Article  Google Scholar 

  12. 12.

    Laurent, S., Dutz, S., Häfeli, U.O., and Mahmoudi, M., Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Adv. Colloid Interface Sci., 2011, vol. 166, pp. 8–23.

    CAS  Article  Google Scholar 

  13. 13.

    Cuny, L., Pia, M., Gisela, H., et al., Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media, J. Contam. Hydrol., 2015, vol. 182, pp. 51–62.

    CAS  Article  Google Scholar 

  14. 14.

    Szpak, A., Kania, G., Skórka, T., et al., Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives, J. Nanopart. Res., 2013, vol. 15, pp. 1372–1383.

    Article  Google Scholar 

  15. 15.

    Polikarpov, D., Cherepanov, V., Chuev, M., et al., Mossbauer evidence of 57Fe3O4 based ferrofluid biodegradation in the brain, Hyperfine Interact., 2014, vol. 226, pp. 421–430.

    CAS  Article  Google Scholar 

  16. 16.

    Li, W.J., Zhou, X.L., Liu, B.L., et al., The effect of nanoparticle on vitrification of porcine GV-stage oocytes, Chin. J. Biomed. Eng., 2013, vol. 32, no. 5, pp. 601–605.

    Google Scholar 

  17. 17.

    Shimizu, T., Akahane, M., Ueha, T., et al., Osteogenesis of cryopreserved osteogenic matrix cell sheets, Cryobiology, 2013, vol. 66, no. 3, pp. 326–332.

    CAS  Article  Google Scholar 

  18. 18.

    Xing, Z., Zhang, J., Kong, L., et al., Combination of cryopreserved hydroxyapatite/bone marrow mesenchymal stem cells repairs rabbit radial defects, Chin. J. Tiss. Eng. Res., 2013, vol. 17, no. 25, pp. 4629–4636.

    CAS  Google Scholar 

  19. 19.

    Fuller, B.J., Cryoprotectants: the essential antifreezes to protect life in the frozen state, CryoLetters, 2004, vol. 25, no. 6, pp. 375–388.

    CAS  Google Scholar 

  20. 20.

    Laurent, S., Forge, D., Port, M., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 2008, vol. 108, no. 6, pp. 2064–2110.

    CAS  Google Scholar 

  21. 21.

    Nel, A.E., Mädler, L., Velegol, D., et al., Understanding biophysicochemical interactions at the nano–bio interface, Nat. Mater., 2009, vol. 8, pp. 543–557.

    CAS  Article  Google Scholar 

  22. 22.

    Jarupoom, P. and Jaita, P., Influence of barium hexaferrite on magnetic properties of hydroxyapatite ceramics, J. Nanosci. Nanotechnol., 2015, vol. 15, pp. 9217–9221.

    CAS  Article  Google Scholar 

  23. 23.

    Pankaew, P. and Klumdoung, P., Structural and magnetic characterizations of nano sized grain zinc ferrite/hydroxyapatite ceramic prepared by solid state reaction route, J. Nanosci. Nanotechnol., 2015, vol. 15, pp. 9281–9286.

    CAS  Article  Google Scholar 

  24. 24.

    Webster, T.J., Massa-Schlueter, E.A., Smith, J.L., and Slamovich, E.B., Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials, 2004, vol. 25, pp. 2111–2121.

    CAS  Article  Google Scholar 

  25. 25.

    Hou, C.H., Hou, S.M., Hsueh, Y.S., et al., The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy, Biomaterials, 2009, vol. 30, pp. 3956–3960.

    CAS  Article  Google Scholar 

  26. 26.

    Dorozhkin, S.V. and Epple, M., Biological and medical significance of calcium phosphates, Angew. Chem., Int. Ed. Engl., 2002, vol. 41, no. 17, pp. 3130–3146.

    CAS  Article  Google Scholar 

  27. 27.

    Vallet-Regí, M., Evolution of bioceramics within the field of biomaterials, C. R. Chim., 2010, vol. 13, nos. 1–2, pp. 174–185.

    Article  Google Scholar 

  28. 28.

    Dorozhkin, S.V., Bioceramics of calcium orthophosphates, Biomaterials, 2010, vol. 31, pp. 1465–1485.

    CAS  Article  Google Scholar 

  29. 29.

    Severin, A.V. and Pankratov, D.A., Synthesis of nanohydroxyapatite in the presence of iron(III) ions, Russ. J. Inorg. Chem., 2016, vol. 61, no. 3, pp. 265–272.

    CAS  Article  Google Scholar 

  30. 30.

    Melikhov, I.V., Komarov, V.F., Severin, A.V., et al., Two-dimensional crystalline hydroxyapatite, Dokl. Phys. Chem., 2000, vol. 373, no. 3, pp. 355–358.

    CAS  Google Scholar 

  31. 31.

    Liao, C.J., Lin, F.H., Chen, K.S., and Sun, J.S., Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere, Biomaterials, 1999, vol. 20, pp. 1807–1813.

    CAS  Article  Google Scholar 

  32. 32.

    Komozin, P.N., Pankratov, D.A., and Kiselev, Yu.M., EPR spectra of solutions of platinum superoxo hydroxo complexes, Russ. J. Inorg. Chem., 1999, vol. 44, no. 12, pp. 1945–1951.

    Google Scholar 

  33. 33.

    Jiang, M., Terra, J., Rossi, A.M., et al., Fe2+/Fe3+ substitution in hydroxyapatite: theory and experiment, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, pp. 22410710–22410715.

    Google Scholar 

  34. 34.

    Koksharov, Yu.A., Gubin, S.P., Kosobudsky, I.D., et al., Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 63, pp. 124071–124074.

    Google Scholar 

  35. 35.

    Carbone, C., Benedetto, F.Di., Marescotti, P., et al., Natural Fe-oxide and oxyhydroxide nanoparticles: an EPR and SQUID investigation, Mineral. Petrol., 2005, vol. 85, pp. 19–32.

    CAS  Article  Google Scholar 

  36. 36.

    Koksharov, Yu.A., Dolzhenko, V.D., and Agazade, S.A., Electron magnetic resonance of synthetic goethite in the range of the magnetic transition, Phys. Solid State, 2010, vol. 52, no. 9, pp. 1929–1934.

    CAS  Article  Google Scholar 

  37. 37.

    Koksharov, Yu.A., Pankratov, D.A., Gubin, S.P., et al., Electron paramagnetic resonance of ferrite nanoparticles, J. Appl. Phys., 2001, vol. 89, no. 4, pp. 2293–2298.

    CAS  Article  Google Scholar 

  38. 38.

    Singh, R.K., Kothiyal, G.P., and Srinivasan, A., Electron spin resonance and magnetic studies on CaO–SiO2–P2O5–Na2O–Fe2O3 glasses, J. Non-Cryst. Solids, 2008, vol. 354, pp. 3166–3170.

    CAS  Article  Google Scholar 

  39. 39.

    Pankratov, D.A., Mössbauer study of oxo derivatives of iron in the Fe2O3–Na2O2 system, Inorg. Mater., 2014, vol. 50, no. 1, pp. 82–89.

    CAS  Article  Google Scholar 

  40. 40.

    Sorkina, T.A., Polyakov, A.Yu., Kulikova, N.A., et al., Nature-inspired soluble iron-rich humic compounds: new look at the structure and properties, J. Soils Sediments, 2014, vol. 14, no. 2, pp. 261–268.

    CAS  Article  Google Scholar 

  41. 41.

    Dyar, M.D., Jawin, E.R., Breves, E., et al., Mössbauer parameters of iron in phosphate minerals: implications for interpretation of martian data, Am. Mineral., 2014, vol. 99, nos. 5–6, pp. 914–942.

    Article  Google Scholar 

  42. 42.

    Mingzhi, J., Xianhao, C., Weiming, X., et al., Mossbauer study of ferric phosphate catalysts, Hyperfine Interact., 1988, vol. 41, pp. 645–648.

    Article  Google Scholar 

  43. 43.

    Polyakov, A.Yu., Goldt, A.E., Sorkina, T.A., et al., Constrained growth of anisotropic magnetic d-FeOOH nanoparticles in the presence of humic substances, CrystEngComm, 2012, vol. 14, no. 23, pp. 8097–8102.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. A. Pankratov.

Additional information

Original Russian Text © D.A. Pankratov, V.D. Dolzhenko, E.A. Ovchenkov, M.M. Anuchina, A.V. Severin, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 1, pp. 94–104.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pankratov, D.A., Dolzhenko, V.D., Ovchenkov, E.A. et al. Properties of iron-containing nanohydroxyapatite-based composites. Inorg Mater 53, 115–124 (2017). https://doi.org/10.1134/S0020168517010125

Download citation

Keywords

  • paramagnetism
  • nanohydroxyapatite
  • nanophase
  • electron paramagnetic resonance
  • Mössbauer spectroscopy
  • magnetic susceptibility