Skip to main content
Log in

Kinetics of crack development in power engineering steels under high-temperature creep

  • Mechanics of Materials: Strength, Lifetime, and Safety
  • Published:
Inorganic Materials Aims and scope

Abstract

Features of crack development kinetics in steels under creep are investigated from positions of fracture mechanics. It is shown that the creep crack growth rate can be approximated by a power dependence on parameter C* or on the stress intensity factor. At the same time, exponents of these dependences are a function of characteristics of long-term strength or material creep. For description of the creep crack rate, it is proposed to use the reduced stress intensity factor, which takes into account the character of the stress distribution in the design section and the crack development time. The experiment verifies the advantages of using the reduced stress intensity factor as a correlation parameter describing the creep crack growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mashinostroenie. Entsiklopediya (Encyclopedia of Machine Engineering), Moscow: Mashinostroenie, 1989, vols. 1–38

  2. Bezopasnost’ Rossii. Pravovye, sotsial’no-ekonomicheskie i nauchno-tekhnicheskie aspekty (Safety of Russia: Legal, Social-Economic, and Scientific-Technical Aspects), Moscow: Znanie, 2013, vols. 1–44

  3. Frolov, K.V., Izrailev, Yu.L., Makhutov, N.A., et al., Raschet termonapryazhenii i prochnosti rotorov i korpusov turbin (Calculation of Thermal Tensions and Durability of Rotors and Cases of Turbines), Moscow: Mashinostroenie, 1998.

    Google Scholar 

  4. Irwin, G.R. and Paris, P.C., Fundamental aspects of crack growth and fracture, in Fracture, Engineering Fundamentals and Environmental Effects, Liebowitz, H., Ed., New York: Academic, 1971, vol. 3, pp. 1–46.

    Chapter  Google Scholar 

  5. Tulyakov, G.A., Skorobogatykh, V.N., and Grinevskii, V.V., Konstruktsionnye materialy dlya energomashinostroeniya (Construction Materials for Energy Engineering), Moscow: Mashinostroenie, 1991.

    Google Scholar 

  6. Rice, J. and Rosengren, G., Plane—stain deformation near a crack tip, J. Mech. Phys. Solids, 1968, vol. 16, no. 1, pp. 1–12.

    Article  Google Scholar 

  7. Riedel, H., Creep deformation at crack tips in elasticviscoplastic solids, J. Mech. Phys. Solids, 1981, vol. 29, pp. 35–49.

    Article  Google Scholar 

  8. Makhutov, N.A., Substantiation of maximum states of the materials and constructions in ordinary and emergent situations, Zavod. Lab., Diagn. Mater., 2013, vol. 79, no. 12, pp. 3–5.

    Google Scholar 

  9. Koterazawa, R. and Mori, T., Applicability of fracture mechanics parameters to crack propagation under creep condition, J. Eng. Mater. Technol., 1977, vol. 99, no. 4, pp. 298–305.

    Article  CAS  Google Scholar 

  10. Bensussan, P., Maas, E., Pelloux, R., and Pineau, A., Creep crack initiation and propagation: fracture mechanics and local approach, J. Pressure Vessel Technol., 1988, vol. 110, no. 1, pp. 42–50.

    Article  CAS  Google Scholar 

  11. Morozov, E.M. and Zernin, M.V., Kontaktnye zadachi mekhaniki razrusheniya (Contact Tasks in Fracture Mechanics), Moscow: Editorial URSS, 2010.

    Google Scholar 

  12. Matvienko, Yu.G., Modeli i kriterii mekhaniki razrusheniya (Models and Criteria of Fracture Mechanics), Moscow: Fizmatlit, 2006.

    Google Scholar 

  13. Ohtani, R. and Nitta, A., Crack propagation in creep, J. Soc. Mater. Sci., 1976, vol. 25, pp. 746–752.

    Article  Google Scholar 

  14. Balina, V.S. and Lanin, A.A., Prochnost’ i dolgovechnost’ konstruktsii pri polzuchesti (Creep Strength and Durability of Constructions), St. Petersburg: Politekhnik, 1995.

    Google Scholar 

  15. Makhutov, N.A., Prochnost’ i bezopasnost’: fundamental’nye i prikladnye issledovaniya (Strength and Safety: Fundamental and Applied Studies), Novosibirsk: Nauka, 2008.

    Google Scholar 

  16. Landes, J.D. and Begley, J., A fracture mechanics approach to creep crack growth, in Mechanics of Crack Growth, ASTM STP 590, West Conshohocken, PA: ASTM Int., 1976, pp. 128–148.

    Chapter  Google Scholar 

  17. Harper, M.P. and Ellison, E.G., The use of the C* parameter in predicting creep crack propagation rates, J. Strain Anal., 1977, vol. 12, pp. 167–179.

    Article  Google Scholar 

  18. Hutchinson, J., Plastic stress and strain fields at a crack tip, J. Mech. Phys. Solids, 1968, vol. 16, no. 5, pp. 337–347.

    Article  Google Scholar 

  19. Nikbin, K., Smith, D., and Webster, G., An engineering approach to the prediction of creep crack growth, Trans. ASME, 1986, vol. 107, pp. 186–191.

    Google Scholar 

  20. Petrenya, Yu.K., Fiziko-mekhanicheskie osnovy kontinual’noi mekhaniki povrezhdaemosti (Physical and Mechanical Principles of Continuum Mechanics of Damage), St. Petersburg: Nauchno-Prizvod. Ob”ed. Issled. Proekt. Energ. Oborud. im. I.I. Polzunova, 1997.

    Google Scholar 

  21. Grin’, E.A., The possibilities of fracture mechanics as applied to problems of strength, service life, and substantiation of safe operation of heat-generating and mechanical equipment, Therm. Eng., 2013, vol. 60, no. 1, pp. 24–31.

    Article  Google Scholar 

  22. Lanin, A.A., Phenomenological regularities pertinent to development of brittle local fractures at high-temperature creep, Therm. Eng., 2013, vol. 60, no. 1, pp. 46–53.

    Article  Google Scholar 

  23. GOST (State Standard) 25.506-85: Mechanical Testing of Metals. Crack Resistance Characteristics (Fracture Viscosity) Under Static Load, Moscow: Gosstandart SSSR, 1985.

  24. Pisarenko, G.S., Naumenko, V.P., and Volkov, G.S., Determination of the coefficient of load intensity in a sample with lateral slots, Probl. Prochn., 1977, no. 10, pp. 5–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Makhutov.

Additional information

Original Russian Text © N.A. Makhutov, E.A. Grin’, V.A. Sarkisyan, 2015, published in Zavodskaya Laboratoriya, Diagnostika Materialov, 2015, Vol. 81, No. 11, pp. 44–52.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhutov, N.A., Grin’, E.A. & Sarkisyan, V.A. Kinetics of crack development in power engineering steels under high-temperature creep. Inorg Mater 52, 1545–1553 (2016). https://doi.org/10.1134/S0020168516150115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516150115

Keywords

Navigation