Skip to main content

Advertisement

Log in

Carbon nanomaterials as electrode surface modifiers in development of amperometric monoamino oxidase biosensors

  • Analysis of Substances
  • Published:
Inorganic Materials Aims and scope

Abstract

Modification of a printed graphite electrode surface by carbon nanomaterials (carbon nanotubes and graphene oxide) was used to improve the analytical capabilities of amperometric monoamine oxidase biosensors in the determination of medicinal substances with antidepressant activity (moclobemide and amitriptyline). It was found that the range of determined concentrations of pharmaceutical agents varied from 1 × 10–4 to 1 × 10–8 mol/L. The developed monoamine oxidase biosensors were used for determination of medicinal agents in their dosage forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deepakumari, H.N., Vinay, K.B., and Revanasiddappa, H.D., Development and validation of a stability indicating RP-UPLC method for analysis of imipramine hydrochloride in pharmaceuticals, ISRN Anal. Chem., 2013, vol. 2013, art. ID 913765.

  2. Fernandez-Navarro, J.J., Ruiz-Angel, M.J., and García-Alvarez-Coque, M.C., Reversed-phase liquid chromatography without organic solvent for determination of tricyclic antidepressants, J. Sep. Sci., 2012, vol. 35, pp. 1303–1309.

    Article  CAS  Google Scholar 

  3. Davarani, S.S.H., Najarian, A.M., Nojavan, S., and Tabatabaei, M.-A., Electromembrane extraction combined with gas chromsatography for quantification of tricyclic antidepressants in human body fluids, Anal. Chim. Acta, 2012, vol. 725, pp. 51–56.

    Article  CAS  Google Scholar 

  4. Ulu, S.T., Determination of tianeptine in human plasma using high-performance liquid chromatography with fluorescence detection, J. Chromatogr. B, 2006, vol. 834, pp. 62–67.

    Article  Google Scholar 

  5. Liu, J., et al., Molecularly engineered graphene surfaces for sensing applications: A review, Anal. Chim. Acta, 2015, vol. 859, pp. 1–19.

    Article  CAS  Google Scholar 

  6. Sheng, M., et al., Carbon nanodots-chitosan composite film: a platform for protein immobilization, direct electrochemistry and bioelectrocatalysis, Biosens. Bioelectron., 2014, vol. 58, pp. 351–358.

    Article  CAS  Google Scholar 

  7. Lynam, C., et al., Carbon nanotube-based transducers for immunoassays, Carbon, 2009, vol. 47, pp. 2337–2343.

    Article  CAS  Google Scholar 

  8. Palanisamy, S., Cheemalapati, S., and Chen, S.-M., Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/ graphene oxide hybrid biocomposite, Mater. Sci. Eng., C, 2014, vol. 34, pp. 207–213.

    Article  CAS  Google Scholar 

  9. Yang, N., et al., Carbon nanotube based biosensors, Sens. Actuators, B, 2014, vol. 204, part A, pp. 690–715.

    Google Scholar 

  10. Punbusayakul, N., Carbon nanotubes architectures in electroanalysis, Proc. Eng., 2012, vol. 32, pp. 683–689.

    Article  CAS  Google Scholar 

  11. Yang, Z., et al., A streptavidin functionalized graphene oxide/Au nanoparticles composite for the construction of sensitive chemiluminescent immunosensor, Anal. Chim. Acta, 2014, vol. 839, pp. 67–73.

    Article  CAS  Google Scholar 

  12. Veerapandian, M., et al., Metalloid polymer nanoparticle functionalized graphene oxide working electrode for durable glucose sensing, Mater. Res. Bull., 2014, vol. 49, pp. 593–600.

    Article  CAS  Google Scholar 

  13. Park, J.Y. and Kim, S., Preparation and electroactivity of polymer functionalized graphene oxide-supported platinum nanoparticles catalysts, Int. J. Hydrogen Energy, 2013, vol. 38, pp. 6275–6282.

    Article  CAS  Google Scholar 

  14. Yan, P., et al., Ultrasensitive detection of clenbuterol by quantum dots based electroluminescent immunosensor using gold nanoparticles as substrate and electron transport accelerator, Sens. Actuators, B, 2014, vol. 191, pp. 508–515.

    Article  CAS  Google Scholar 

  15. Wang, S., et al., Development of enzyme-linked immunosorbent assay (ELISA) for the detection of neomycin residues in pig muscle, chicken muscle, egg, fish, milk and kidney, Meat Sci., 2009, vol. 82, pp. 53–58.

    Article  CAS  Google Scholar 

  16. Mashkovskii, M.D., Lekarstvennye sredstva (The Medical Drugs), Moscow: Novaya Volna, 2002, vol. 1.

  17. He, L., et al., Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications, Appl. Surf. Sci., 2014, vol. 314, pp. 510–515.

    Article  CAS  Google Scholar 

  18. Shieh, Y.-T. and Yang, Y.-F., Significant improvements in mechanical property and water stability of chitosan by carbon nanotubes, Eur. Polym. J., 2006, vol. 42, pp. 3162–3170.

    Article  CAS  Google Scholar 

  19. Shukla, S.K., et al., Chitosan-based nanomaterials: a state-of-the-art review, Int. J. Biol. Macromol., 2013, vol. 59, pp. 46–58.

    Article  CAS  Google Scholar 

  20. Li, X.-B. and Jiang, X.-Y., Electrostatic layer-by-layer assembled multilayer films of chitosan and carbon nanotubes, New Carbon Mater., 2010, vol. 25, no. 3, pp. 237–240.

    Article  CAS  Google Scholar 

  21. Feng, W. and Ji, P., Enzymes immobilized on carbon nanotubes, Biotechnol. Adv., 2011, vol. 29, pp. 889–895.

    Article  CAS  Google Scholar 

  22. Martín, A. and Escarpa, A., Graphene: The cuttingedge interaction between chemistry and electrochemistry, Trends Anal. Chem., 2014, vol. 56, pp. 13–26.

    Article  Google Scholar 

  23. Gorkin, V.Z., Aminoksidazy i ikh znachenie v meditsine (Amine Oxidases and Their Implementation in Medicine), Moscow: Meditsina, 1981.

    Google Scholar 

  24. Kulis, Yu.Yu., Analiticheskie sistemy na osnove immobilizovannykh fermentov (Analytical Systems Based on Immobilized Enzymes), Vilnius: Mokslas, 1981.

    Google Scholar 

  25. Medyantseva, E.P., et al., Determination of antidepressants using monoamine oxidase amperometric biosensors based on screen-printed graphite electrodes modified with multi-walled carbon nanotubes, Pharm. Chem. J., 2014, vol. 48, no. 7, pp. 478–482.

    Article  CAS  Google Scholar 

  26. Medyantseva, E.P., et al., Determination of drugs of strict account by amperometric monoamine oxidase biosensors, Butlerov Comm., 2014, vol. 37, no. 3, pp. 105–112.

    Google Scholar 

  27. Brusnitsyn, D.V., et al., Amperometric determination of antidepressants by monoamino oxidase biosensors based on carbon nanotubes and silver nanoparticles as chemical modifiers, Uch. Zap. Kazan. Univ., Ser.: Estestv. Nauki, 2014, vol. 156, no. 2, pp. 37–50.

    CAS  Google Scholar 

  28. Krupyanko, V.I., Vektornyi metod predstavleniya fermentativnykh reaktsii (Vector Method of Representation of Enzymatic Reactions), Moscow: Nauka, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Brusnitsyn.

Additional information

Original Russian Text © D.V. Brusnitsyn, E.P. Medyantseva, R.M. Varlamova, R.R. Sitdikova, A.N. Fattakhova, O.A. Konovalova, G.K. Budnikov, 2015, published in Zavodskaya Laboratoriya, Diagnostika Materialov, 2015, Vol. 81, No. 6, pp. 21–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brusnitsyn, D.V., Medyantseva, E.P., Varlamova, R.M. et al. Carbon nanomaterials as electrode surface modifiers in development of amperometric monoamino oxidase biosensors. Inorg Mater 52, 1413–1419 (2016). https://doi.org/10.1134/S002016851614003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851614003X

Keywords

Navigation