Abstract
This paper presents a study of the electrodynamic properties of polymer-matrix composite materials containing a filler in the form of multiwalled carbon nanotubes. We have examined the effect of filler alignment in the composites on their interaction with electromagnetic radiation. The composite materials have an anisotropic electrical conductivity, dielectric permittivity, and electromagnetic radiation attenuation coefficient because an applied electric field produces a preferential filler alignment direction.
This is a preview of subscription content, access via your institution.
References
- 1.
Yu, X. and Shen, Z., The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method, J. Magn. Magn. Mater., 2009, vol. 321, no. 18, pp. 2890–2895.
- 2.
Tzeng, S.-S. and Chang, F.-Y., EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites, Mater. Sci. Eng., A, 2001, vol. 302, no. 2, pp. 258–267.
- 3.
Chen, M., Yin, X., Li, M., Chen, L., Cheng, L., and Zhang, L., Electromagnetic interference shielding properties of silicon nitride ceramics reinforced by in situ grown carbon nanotubes, Ceram. Int. A, 2015, vol. 41, no. 2, pp. 2467–2475.
- 4.
Qin, F. and Brosseau, C., A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys., 2012, vol. 111, paper 061 301.
- 5.
Schmitt, G., Brachmann, J., Waldecker, B., Navarrete, L., Beyer, T., Pfeifer, A., and Kubler, W., Implantable cardioverter defibrillator: possible hazards of electromagnetic interference, Pacing Clin. Electrophysiol., 1991, vol. 14, no. 6, pp. 982–984.
- 6.
Lee, H.-C., Kim, J.-Y., Noh, C.-H., Song, K.Y., and Cho, S.-H., Selective metal pattern formation and its EMI shielding efficiency, Appl. Surf. Sci., 2006, vol. 252, no. 8, pp. 2665–2672.
- 7.
Han, E.G., Kim, E.A., and Oh, K.W., Electromagnetic interference shielding effectiveness of electroless Cuplated PET fabrics, Synth. Met., 2001, vol. 123, no. 3, pp. 469–476.
- 8.
Huang, C.-Y., Mo, W.-W., and Roan, M.-L., Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites, Surf. Coat. Technol., 2004, vol. 184, nos. 2–3, pp. 163–169.
- 9.
Wang, G.-S., Zhang, X.-J., Wei, Y.-Z., He, S., Guo, L., and Cao, M.-S., Polymer composites with enhanced wave absorption properties based on modified graphite and polyvinylidene fluoride, J. Mater. Chem. A, 2013, vol. 1, no. 24, pp. 7031–7036.
- 10.
Li, B., Ito, W., Hiwatashi, H., and Oya, T., New electromagnetic shielding sheets using carbon-nanotubecomposite paper, Tech. Proc. NSTI-Nanotech., 2013, vol. 1, pp. 276–279.
- 11.
Liu, L., Das, A., and Megaridis, C.M., Terahertz shielding of carbon nanomaterials and their composites— a review and applications, Carbon, 2014, vol. 69, pp. 1–16.
- 12.
Saini, P., Choudhary, V., Singh, B.P., Mathur, R.B., and Dhawan, S.K., Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding, Mater. Chem. Phys., 2009, vol. 113, nos. 2–3, pp. 919–926.
- 13.
Jia, L.-C., Yan, D.-X., Cui, C.-H., Jiang, X., Ji, X., and Li, Z.-M., Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks, J. Mater. Chem. C, 2015, vol. 3, pp. 9369–9378.
- 14.
Iijima, S., Helical microtubules of graphitic carbon, Nature, 1991, vol. 354, pp. 56–58.
- 15.
Xie, X.-L., Mai, Y.-W., and Zhou, X.-P., Dispersion and alignment of carbon nanotubes in polymer matrix: a review, Mater. Sci. Eng., R, 2005, vol. 49, no. 4, pp. 89–112.
- 16.
Wang, M.-W., Hsu, T.-C., and Weng, C.-H., Alignment of MWCNTs in polymer composites by dielectrophoresis, Eur. Phys. J. Appl. Phys, 2008, vol. 42, no. 3, pp. 241–246.
- 17.
Bellan, C. and Bossis, G., Field dependence of viscoelastic properties of MRelastomers, Int. J. Mod. Phys. B, 2002, vol. 16, nos. 17–18, pp. 2447–2453.
- 18.
Coquelle, E. and Bossis, G., Mullins effect in elastomers filled with particles aligned by a magnetic field, Int. J. Solid Structures, 2006, vol. 43, nos. 25–26, pp. 7659–7672.
- 19.
Courty, S., Mine, J., Tajbakhsh, A.R., and Terentjev, E.M., Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators, Europhys. Lett., 2003, vol. 64, no. 5, pp. 654–660.
- 20.
Shao-Jie, M. and Guo, W.-L., Mechanism of carbon nanotubes aligning along applied electric field, Chin. Phys. Lett., 2008, vol. 25, no. 1, pp. 270–273.
- 21.
Yakovenko, O., Matzui, L., Vovchenko, L., and Zhuravkov, A., Development of carbon nanotube–polymer composites with oriented distribution of MWCNTs induced by electric field, Phys. Status Solidi A, 2014, vol. 211, no. 12, pp. 2718–2722.
- 22.
Kimura, T., Ago, H., Tobita, M., Ohshima, S., Kyotani, M., and Yumura, M., Polymer composites of carbon nanotubes aligned by a magnetic field, Adv. Mater., 2002, vol. 14, pp. 1380–1383.
- 23.
Wanga, L.-L., Tayb, B.-K., Seeb, K.-Y., Suna, Z., Tanb, L.-K., and Lua, D., Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing, Carbon, 2009, vol. 47, pp. 1905–1910.
- 24.
Vovchenko, L., Matzui, L., Oliynyk, V., Launetz, V., and Lazarenko, A., Nanocarbon–epoxy composites as electromagnetic shielding materials, Mol. Cryst. Liq. Cryst., 2008, vol. 497, no. 1, pp. 46–54.
- 25.
Yakovenko, O.S., Matzui, L.Yu., Zhuravkov, O.V., and Vovchenko, L.L., Effect of the viscosity of a medium on the formation of anisotropic structures with carbon nanotubes under the action of an electric field, Visn. Kyiv. Nats. Univ. Ser. Fiz.-Mat. Nauki, 2014, vol. 2, pp. 283–290.
- 26.
Oliva-Aviles, A.I., Aviles, F., Sosa, V., and Seidel, G.D., Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields, Carbon, 2014, vol. 69, pp. 342–354.
- 27.
Oliva-Aviles, A.I., Aviles, F., Sosa, V., Oliva, A.I., and Gamboa, F., Dynamics of carbon nanotube alignment by electric fields, Nanotechnology, 2012, vol. 23, no. 46, paper 465 710.
- 28.
Chen, Z., Yang, Y., Chen, F., Qing, Q., Wu, Z., and Liu, Z., Controllable interconnection of single-walled carbon nanotubes under ac electric field, J. Phys. Chem. B, 2005, vol. 109, pp. 11420–11423.
- 29.
Chan, R., Fung, C., and Li, W., Rapid assembly of carbon nanotubes for nanosensing by dielectrophoretic force, Nanotechnology, 2004, vol. 15, no. 10, pp. S672–S677.
- 30.
Vovchenko, L., Matzui, L., Oliynyk, V., and Launetz, V., The effect of filler morphology and distribution on electrical and shielding properties of graphite–epoxy composites, Mol. Cryst. Liq. Cryst., 2011, vol. 535, pp. 179–188.
- 31.
Vovchenko, L., Matzui, L., Oliynyk, V., Launetz, V., Prylutskyy, Yu., Hui, D., and Strzhemechny, Yu., Modified exfoliated graphite as a material for shielding against electromagnetic radiation, Int. J. Nanosci., 2008, vol. 7, pp. 263–268.
Author information
Affiliations
Corresponding author
Additional information
Original Russian Text © O.S. Yakovenko, L.Yu. Matzui, L.L. Vovchenko, V.V. Oliynyk, V.L. Launetz, A.V. Trukhanov, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 11, pp. 1271–1276.
Rights and permissions
About this article
Cite this article
Yakovenko, O.S., Matzui, L.Y., Vovchenko, L.L. et al. Dielectric properties of composite materials containing aligned carbon nanotubes. Inorg Mater 52, 1198–1203 (2016). https://doi.org/10.1134/S0020168516110182
Received:
Accepted:
Published:
Issue Date:
Keywords
- carbon nanotubes
- composite materials
- dielectric permittivity
- electromagnetic shielding
- anisotropy