Dielectric properties of composite materials containing aligned carbon nanotubes

Abstract

This paper presents a study of the electrodynamic properties of polymer-matrix composite materials containing a filler in the form of multiwalled carbon nanotubes. We have examined the effect of filler alignment in the composites on their interaction with electromagnetic radiation. The composite materials have an anisotropic electrical conductivity, dielectric permittivity, and electromagnetic radiation attenuation coefficient because an applied electric field produces a preferential filler alignment direction.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Yu, X. and Shen, Z., The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method, J. Magn. Magn. Mater., 2009, vol. 321, no. 18, pp. 2890–2895.

    CAS  Article  Google Scholar 

  2. 2.

    Tzeng, S.-S. and Chang, F.-Y., EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites, Mater. Sci. Eng., A, 2001, vol. 302, no. 2, pp. 258–267.

    Article  Google Scholar 

  3. 3.

    Chen, M., Yin, X., Li, M., Chen, L., Cheng, L., and Zhang, L., Electromagnetic interference shielding properties of silicon nitride ceramics reinforced by in situ grown carbon nanotubes, Ceram. Int. A, 2015, vol. 41, no. 2, pp. 2467–2475.

    CAS  Article  Google Scholar 

  4. 4.

    Qin, F. and Brosseau, C., A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys., 2012, vol. 111, paper 061 301.

    Google Scholar 

  5. 5.

    Schmitt, G., Brachmann, J., Waldecker, B., Navarrete, L., Beyer, T., Pfeifer, A., and Kubler, W., Implantable cardioverter defibrillator: possible hazards of electromagnetic interference, Pacing Clin. Electrophysiol., 1991, vol. 14, no. 6, pp. 982–984.

    CAS  Article  Google Scholar 

  6. 6.

    Lee, H.-C., Kim, J.-Y., Noh, C.-H., Song, K.Y., and Cho, S.-H., Selective metal pattern formation and its EMI shielding efficiency, Appl. Surf. Sci., 2006, vol. 252, no. 8, pp. 2665–2672.

    CAS  Article  Google Scholar 

  7. 7.

    Han, E.G., Kim, E.A., and Oh, K.W., Electromagnetic interference shielding effectiveness of electroless Cuplated PET fabrics, Synth. Met., 2001, vol. 123, no. 3, pp. 469–476.

    CAS  Article  Google Scholar 

  8. 8.

    Huang, C.-Y., Mo, W.-W., and Roan, M.-L., Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites, Surf. Coat. Technol., 2004, vol. 184, nos. 2–3, pp. 163–169.

    CAS  Article  Google Scholar 

  9. 9.

    Wang, G.-S., Zhang, X.-J., Wei, Y.-Z., He, S., Guo, L., and Cao, M.-S., Polymer composites with enhanced wave absorption properties based on modified graphite and polyvinylidene fluoride, J. Mater. Chem. A, 2013, vol. 1, no. 24, pp. 7031–7036.

    CAS  Article  Google Scholar 

  10. 10.

    Li, B., Ito, W., Hiwatashi, H., and Oya, T., New electromagnetic shielding sheets using carbon-nanotubecomposite paper, Tech. Proc. NSTI-Nanotech., 2013, vol. 1, pp. 276–279.

    CAS  Google Scholar 

  11. 11.

    Liu, L., Das, A., and Megaridis, C.M., Terahertz shielding of carbon nanomaterials and their composites— a review and applications, Carbon, 2014, vol. 69, pp. 1–16.

    Article  Google Scholar 

  12. 12.

    Saini, P., Choudhary, V., Singh, B.P., Mathur, R.B., and Dhawan, S.K., Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding, Mater. Chem. Phys., 2009, vol. 113, nos. 2–3, pp. 919–926.

    CAS  Article  Google Scholar 

  13. 13.

    Jia, L.-C., Yan, D.-X., Cui, C.-H., Jiang, X., Ji, X., and Li, Z.-M., Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks, J. Mater. Chem. C, 2015, vol. 3, pp. 9369–9378.

    CAS  Article  Google Scholar 

  14. 14.

    Iijima, S., Helical microtubules of graphitic carbon, Nature, 1991, vol. 354, pp. 56–58.

    CAS  Article  Google Scholar 

  15. 15.

    Xie, X.-L., Mai, Y.-W., and Zhou, X.-P., Dispersion and alignment of carbon nanotubes in polymer matrix: a review, Mater. Sci. Eng., R, 2005, vol. 49, no. 4, pp. 89–112.

    Article  Google Scholar 

  16. 16.

    Wang, M.-W., Hsu, T.-C., and Weng, C.-H., Alignment of MWCNTs in polymer composites by dielectrophoresis, Eur. Phys. J. Appl. Phys, 2008, vol. 42, no. 3, pp. 241–246.

    Article  Google Scholar 

  17. 17.

    Bellan, C. and Bossis, G., Field dependence of viscoelastic properties of MRelastomers, Int. J. Mod. Phys. B, 2002, vol. 16, nos. 17–18, pp. 2447–2453.

    CAS  Article  Google Scholar 

  18. 18.

    Coquelle, E. and Bossis, G., Mullins effect in elastomers filled with particles aligned by a magnetic field, Int. J. Solid Structures, 2006, vol. 43, nos. 25–26, pp. 7659–7672.

    CAS  Article  Google Scholar 

  19. 19.

    Courty, S., Mine, J., Tajbakhsh, A.R., and Terentjev, E.M., Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators, Europhys. Lett., 2003, vol. 64, no. 5, pp. 654–660.

    CAS  Article  Google Scholar 

  20. 20.

    Shao-Jie, M. and Guo, W.-L., Mechanism of carbon nanotubes aligning along applied electric field, Chin. Phys. Lett., 2008, vol. 25, no. 1, pp. 270–273.

    Article  Google Scholar 

  21. 21.

    Yakovenko, O., Matzui, L., Vovchenko, L., and Zhuravkov, A., Development of carbon nanotube–polymer composites with oriented distribution of MWCNTs induced by electric field, Phys. Status Solidi A, 2014, vol. 211, no. 12, pp. 2718–2722.

    CAS  Article  Google Scholar 

  22. 22.

    Kimura, T., Ago, H., Tobita, M., Ohshima, S., Kyotani, M., and Yumura, M., Polymer composites of carbon nanotubes aligned by a magnetic field, Adv. Mater., 2002, vol. 14, pp. 1380–1383.

    CAS  Article  Google Scholar 

  23. 23.

    Wanga, L.-L., Tayb, B.-K., Seeb, K.-Y., Suna, Z., Tanb, L.-K., and Lua, D., Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing, Carbon, 2009, vol. 47, pp. 1905–1910.

    Article  Google Scholar 

  24. 24.

    Vovchenko, L., Matzui, L., Oliynyk, V., Launetz, V., and Lazarenko, A., Nanocarbon–epoxy composites as electromagnetic shielding materials, Mol. Cryst. Liq. Cryst., 2008, vol. 497, no. 1, pp. 46–54.

    CAS  Article  Google Scholar 

  25. 25.

    Yakovenko, O.S., Matzui, L.Yu., Zhuravkov, O.V., and Vovchenko, L.L., Effect of the viscosity of a medium on the formation of anisotropic structures with carbon nanotubes under the action of an electric field, Visn. Kyiv. Nats. Univ. Ser. Fiz.-Mat. Nauki, 2014, vol. 2, pp. 283–290.

    Google Scholar 

  26. 26.

    Oliva-Aviles, A.I., Aviles, F., Sosa, V., and Seidel, G.D., Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields, Carbon, 2014, vol. 69, pp. 342–354.

    CAS  Article  Google Scholar 

  27. 27.

    Oliva-Aviles, A.I., Aviles, F., Sosa, V., Oliva, A.I., and Gamboa, F., Dynamics of carbon nanotube alignment by electric fields, Nanotechnology, 2012, vol. 23, no. 46, paper 465 710.

  28. 28.

    Chen, Z., Yang, Y., Chen, F., Qing, Q., Wu, Z., and Liu, Z., Controllable interconnection of single-walled carbon nanotubes under ac electric field, J. Phys. Chem. B, 2005, vol. 109, pp. 11420–11423.

    CAS  Article  Google Scholar 

  29. 29.

    Chan, R., Fung, C., and Li, W., Rapid assembly of carbon nanotubes for nanosensing by dielectrophoretic force, Nanotechnology, 2004, vol. 15, no. 10, pp. S672–S677.

    CAS  Article  Google Scholar 

  30. 30.

    Vovchenko, L., Matzui, L., Oliynyk, V., and Launetz, V., The effect of filler morphology and distribution on electrical and shielding properties of graphite–epoxy composites, Mol. Cryst. Liq. Cryst., 2011, vol. 535, pp. 179–188.

    CAS  Article  Google Scholar 

  31. 31.

    Vovchenko, L., Matzui, L., Oliynyk, V., Launetz, V., Prylutskyy, Yu., Hui, D., and Strzhemechny, Yu., Modified exfoliated graphite as a material for shielding against electromagnetic radiation, Int. J. Nanosci., 2008, vol. 7, pp. 263–268.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. S. Yakovenko.

Additional information

Original Russian Text © O.S. Yakovenko, L.Yu. Matzui, L.L. Vovchenko, V.V. Oliynyk, V.L. Launetz, A.V. Trukhanov, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 11, pp. 1271–1276.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, O.S., Matzui, L.Y., Vovchenko, L.L. et al. Dielectric properties of composite materials containing aligned carbon nanotubes. Inorg Mater 52, 1198–1203 (2016). https://doi.org/10.1134/S0020168516110182

Download citation

Keywords

  • carbon nanotubes
  • composite materials
  • dielectric permittivity
  • electromagnetic shielding
  • anisotropy