Skip to main content
Log in

Amorphous silica containers for germanium ultrapurification by zone refining

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the wetting behavior of molten germanium on silica ceramics and amorphous silica coatings in vacuum at a pressure of 1 Pa and a temperature of 1273 K. The results demonstrate that the wetting of rough surfaces of ceramic samples and coatings by liquid Ge is significantly poorer than that of the smooth surface of quartz glass. The contact angle of polished glass is ~100°, and that of the ceramics and coatings increases from 112° to 137° as the total impurity content of the material decreases from 0.120 to 1 × 10–3 wt %. Using experimental contact angle data, we calculated the work of adhesion of molten Ge to the materials studied. Its value for the surface of the ceramics and coatings decreases from 0.45 to 0.20 J/m2 with decreasing impurity content, whereas the work of adhesion to a smooth glass surface is 0.55 J/m2. We have fabricated fused silica test containers coated with high-purity amorphous silica. Using horizontal zone refining, we obtained germanium samples with a carrier concentration difference on the order of 1011 cm–3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dimroth, F. and Kurtz, S., High-efficiency multijunction solar cells, MRS Bull., 2007, vol. 32, pp. 230–235.

    Article  CAS  Google Scholar 

  2. Taishi, T., Ise, H., and Murao, Y., Czochralski-growth of germanium crystals containing high concentrations of oxygen impurities, J. Cryst. Growth, 2010, vol. 312, pp. 2783–2787.

    Article  CAS  Google Scholar 

  3. Luque, A. and Hegedus, S., Handbook of Photovoltaic Science and Engineering, Wiley, 2003.

    Book  Google Scholar 

  4. Claeys, L. and Simoen, E., Germanium-Based Technologies: From Materials to Devices, Oxford: Elsevier, 2007.

    Google Scholar 

  5. Depuydt, B., Theuwis, A., and Romandic, I., Germanium: from the first application of Czochralski crystal growth to large diameter dislocation-free wafers, Mater. Sci. Semicond. Process., 2006, vol. 9, no. 4, pp. 437–443.

    Article  CAS  Google Scholar 

  6. Chroneos, A. and Vovk, R.V., Oxygen diffusion in germanium: interconnecting point defect parameters with bulk properties, J. Mater. Sci. Mater. Electron., 2015, vol. 26, no. 10, pp. 7378–7380.

    Article  CAS  Google Scholar 

  7. Hubbard, G.S., Haller, E.E., and Hansen, W.L., Zone refining high-purity germanium, IEEE Trans. Nucl. Sci., 1978, vol. 25, no. 1, pp. 362–370.

    Article  Google Scholar 

  8. Devyatykh, G.G., Andreev, B.A., Gavva, V.A., Gusev, A.V., Polozkov, S.A., Maksimov, G.A., and Nechuneev, Yu.A., Effect of container material on the degree of zone refining of germanium, Dokl. Akad. Nauk SSSR, 1986, vol. 291, no. 1, pp. 169–170.

    CAS  Google Scholar 

  9. Podkopaev, O.I., Shimanskii, A.F., and Molotkovskaya, N.O., Wettability of amorphous silica-based materials by molten germanium, Sovr. Probl. Nauki Obraz., 2012, no. 6.

  10. Cröll, A., Salk, N., Szofran, F.R., Cobb, S.D., and Volz, M.P., Wetting angles and surface tension of Ge1–x Six melts on different substrate materials, J. Cryst. Growth, 2002, vol. 242, pp. 45–54.

    Article  Google Scholar 

  11. Kaiser, N., Cröll, A., Szofran, F.R., Cobb, S.D., and Benz, K.W., Wetting angle and surface tension of germanium melts on different substrate materials, J. Cryst. Growth, 2001, no. 231, pp. 448–457.

    Article  CAS  Google Scholar 

  12. Shimanskii, A.F., Pivinskii, Yu.E., Savchenko, N.S., and Podkopaev, O.I., RF Patent 2 333 900, Byull. Izobret., 2008, no. 26.

  13. Savchenko, N.S., Podkopaev, O.I., Vasil’eva, M.N., and Shimanskii, A.F., Sol–gel synthesis of silica and fabrication of silica crucibles for silicon melting, Ogneupory Tekh. Keram., 2007, no. 1, pp. 30–34.

    Google Scholar 

  14. Averichkin, P.A., Levokovich, B.N., Parkhomenko, Yu.N., Shlenskii, A.A., and Shmatov, N.N., RF Patent 2 370 568, Byull. Izobret., 2009, no. 29.

  15. Podkopaev, O.I., Shimanskii, A.F., Molotkovskaya, N.O., and Kulakovskaya, T.V., Effect of the microstructure on electrical properties of high-purity germanium, Phys. Solid State, 2013, vol. 55, no. 5, pp. 949–951.

    Article  CAS  Google Scholar 

  16. Lang, D.V., Deep level transient spectroscopy: a new method to characterize traps in semiconductors, J. Appl. Phys., 1974, vol. 45, pp. 3023–3032.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Podkopaev.

Additional information

Original Russian Text © O.I. Podkopaev, A.F. Shimanskii, T.V. Kulakovskaya, A.N. Gorodishcheva, N.O. Golubovskaya, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 11, pp. 1163–1167.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podkopaev, O.I., Shimanskii, A.F., Kulakovskaya, T.V. et al. Amorphous silica containers for germanium ultrapurification by zone refining. Inorg Mater 52, 1091–1095 (2016). https://doi.org/10.1134/S0020168516100125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516100125

Keywords

Navigation