Inorganic Materials

, Volume 52, Issue 7, pp 729–734 | Cite as

Effect of TiN nanoparticles on the grain size, wear resistance, and strength of the intermetallic compound Ni3Al

  • V. E. OvcharenkoEmail author
  • E. N. Boyangin


We have studied the effect of TiN nanoparticles as crystallization centers for the intermetallic compound Ni3Al on the grain size of Ni3Al synthesized under pressure using a stoichiometric elemental powder mixture. The results demonstrate that the addition of 0.3–0.7 wt % TiN nanoparticles to a starting mixture of nickel and aluminum powders reduces the average grain size of the synthesized intermetallic compound and raises its wear resistance and tensile strength in the temperature range from 20 to 1000°C.


intermetallic compound Ni3Al TiN nanoparticles grain structure grain size wear resistance coefficient of friction ultimate strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, Sims, C.N., Stoloff, N.S., and Hagel, W.C., Eds., New York: Wiley–Interscience, 1987.Google Scholar
  2. 2.
    Mrowec, S. and Werber, T., Nowoczsne materialy žaroodporne, Warsaw: Wydawnictwo Nauk.–Tech., 1982.Google Scholar
  3. 3.
    Kablov, E.N., Structural materials based on Ni and Ti intermetallic compounds for high-temperature parts of gas turbine engines for aircraft and power applications, Perspekt. Mater., 2007, no. 1, pp. 77–83.Google Scholar
  4. 4.
    Povarova, K.B., Future prospects in the Development of structural alloys based on intermetallic compounds, Perspekt. Mater., 2007, no. 5, pp. 481–489.Google Scholar
  5. 5.
    Struktura i svoistva intermetallicheskikh materialov s nanofaznym uprochneniem (Structure and Properties of Nanohardened Intermetallic Materials), Kablov, E.N. and Kolobov, Yu.R., Eds., Moscow: Izdatel’skii Dom MISiS, 2008.Google Scholar
  6. 6.
    Somov, A.I. and Tikhonovskii, M.A., Evtekticheskie kompozitsii (Eutectic Composites), Moscow: Metallurgiya, 1975.Google Scholar
  7. 7.
    Whisker Technology, Levitt, A., Ed., New York: Academic, 1969.Google Scholar
  8. 8.
    Portnoi, K.I., Babich, B.N., and Svetlov, I.L., Kompozitsionnye materialy na nikelevoi osnove (Nickel-Based Composite Materials), Moscow: Metallurgiya, 1979.Google Scholar
  9. 9.
    Gessinger, G.Kh., Poroshkovaya metallurgiya zharoprochnykh splavov (Powder Metallurgy of High-Temperature Alloys), Chelyabinsk: Metallurgiya, 1988.Google Scholar
  10. 10.
    Kishkin, S.T., Stroganov, G.B., and Logunov, A.V., Liteinye zharoprochnye splavy na nikelevoi osnove (Cast High-Temperature Nickel-Based Alloys), Moscow: Mashinostroenie, 1987.Google Scholar
  11. 11.
    Saburov, V.P., Cherepanov, A.N., Zhukov, M.F., Galevskii, G.V., Krushenko, G.G., and Borisov, V.T., Plazmokhimicheskii sintez ul’tradispersnykh poroshkov i ikh primenenie dlya modifitsirovaniya metallov i splavov (Plasma Synthesis of Ultrafine Powders and Application of Such Powders for Modifying Metals and Alloys), Novosibirsk: Nauka, 1996.Google Scholar
  12. 12.
    Saburov, V.P., Eremin, E.N., Cherepanov, A.N., and Minnekhanov, G.N., Modifitsirovanie stalei i splavov dispersnymi inokulyatorami (Modification of Steel and Alloys with Disperse Inoculators), Omsk: Omsk. Gos. Tekh. Univ., 2002.Google Scholar
  13. 13.
    Ovcharenko, V.E., Perevalova, O.B., and Lapshin, O.V., Effect of plastic deformation of a high-temperature synthesis product on the microstructure of the intermetallic compound Ni3Al synthesized under pressure, Fiz. Khim. Obrab. Mater., 2008, no. 4, pp. 18–25.Google Scholar
  14. 14.
    Ovcharenko, V.E., Lapshin, O.V., and Ramazanov, I.S., Grain structure formation in the intermetallic compound Ni3Al during synthesis under pressure, Fiz. Goreniya Vzryva, 2006, vol. 42, no. 3, pp. 64–70.Google Scholar
  15. 15.
    Ovcharenko, V.E. and Perevalova, O.B., Effect of hightemperature synthesis conditions on the microstructure and mechanical properties of the intermetallic compound Ni3Al, Fiz. Khim. Obrab. Mater., 2009, no. 6, pp. 86–90.Google Scholar
  16. 16.
    Cherepanov, A., Manolov, V., and Poluboyarov, V., Modification of grey cast iron properties with nanopowders of refractory compounds, J. Mater. Sci. Technol., 2013, vol. 20, no. 2, pp. 101–107.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations