Advertisement

Inorganic Materials

, Volume 52, Issue 7, pp 669–676 | Cite as

Effect of chemical modification conditions on the sintering behavior of TiC powders

  • E. I. IstominaEmail author
  • P. V. Istomin
  • A. V. Nadutkin
  • V. E. Grass
Article

Abstract

Dense ceramics have been produced from a chemically modified titanium carbide powder. Chemical modification was carried out by siliciding titanium carbide powder in a gaseous SiO atmosphere at 1350°C. This treatment produced a Ti3SiC2 layer (up to 19 wt %) on the surface of the TiC particles. Hot pressing at a temperature of 1600°C and pressures from 10 to 20 MPa ensured effective densification of the modified powders. The density of the resultant material reaches 4.8 g/cm3, with a residual porosity under 2%. Its bending strength and fracture toughness are 330 ± 50 MPa and 6.2 ± 0.6 MPa m1/2, respectively.

Keywords

titanium carbide silicidation hot pressing ceramic materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kiparisov, S.S., Levinskii, Yu.V., and Petrov, A.P., Karbid titana: poluchenie, svoistva, primenenie (Preparation, Properties, and Applications of Titanium Carbide), Moscow: Metallurgiya, 1987.Google Scholar
  2. 2.
    Stasyuk, L.F. and Neshpor, V.S., Effect of the particle size of titanium carbide on hot compaction under high pressure, Poroshk. Metall. (Kiev), 1987, no. 8, pp. 31–35.Google Scholar
  3. 3.
    Ono, T., Endo, H., and Uedi, M., Hot-pressing of TiC–graphite composite materials, J. Mater. Eng. Perform., 1993, vol. 2, pp. 659–664.CrossRefGoogle Scholar
  4. 4.
    Zhoua, M., Rodrigoa, P.D.D., Wanga, X., Hub, J., Dongb, Sh., and Chenga, Y.-B., A novel approach for preparation of dense TiC–SiC nanocomposites by sol–gel infiltration and spark plasma sintering, J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1949–1954.CrossRefGoogle Scholar
  5. 5.
    Cheng, L., Xie, Z., and Liu, G., Spark plasma sintering of TiC ceramic with tungsten carbide as a sintering additive, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 2971–2977.CrossRefGoogle Scholar
  6. 6.
    Cho, K.S., Kim, Y.W., Choi, H.J., and Lee, J.G., SiC–TiC and SiC–TiB2 composites densified by liquidphase sintering, J. Mater. Sci., 1996, vol. 35, no. 23, pp. 6223–6228.CrossRefGoogle Scholar
  7. 7.
    Ahmoye, D. and Krstic, V.D., Reaction sintering of SiC composites with in situ converted TiO2 to TiC, J. Mater. Sci., 2015, vol. 50, no. 7, pp. 2806–2812.CrossRefGoogle Scholar
  8. 8.
    Istomina, E.I., Istomin, P.V., and Nadutkin, A.V., Siliciding of titanium carbides with gaseous SiO, Russ. J. Inorg. Chem., 2012, vol. 57, no. 8, pp. 1058–1063.CrossRefGoogle Scholar
  9. 9.
    Istomina, E.I., Istomin, P.V., Nadutkin, A.V., and Grass, V.E., Modification of titanium carbide powders by silicidation with gaseous SiO, Ceram. Trans., 2014, vol. 248, pp. 509–514.Google Scholar
  10. 10.
    Barsoum, M.W., The Mn + 1AXn phases: a new class of solids; thermodynamically stable nanolaminates, Prog. Solid State. Chem., 2000, vol. 28, nos. 1–4, pp. 201–281.CrossRefGoogle Scholar
  11. 11.
    Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Vaporization of Oxides), Moscow: Nauka, 1997.Google Scholar
  12. 12.
    Kraus, W. and Nolze, G., Powder Cell—a program for the representation and manipulation of crystal structures and calculation of the X ray powder patterns, J. Appl. Crystallogr., 1996, vol. 29, pp. 301–303.CrossRefGoogle Scholar
  13. 13.
    Andrievskii, A.R. and Spivak, I.I., Prochnost’ tugoplavkikh soedinenii i materialov na ikh osnove: Spravochnoe izdanie (Strength of Refractory Compounds and Related Materials: A Handbook), Chelyabinsk: Metallurgiya, 1989.Google Scholar
  14. 14.
    Svoistva, poluchenie i primenenie tugoplavkikh soedinenii. Spravochnoe izdanie (Properties, Preparation, and Applications of Refractory Compounds: A Handbook), Kosolapova, T.Ya., Ed., Moscow: Metallurgiya, 1986.Google Scholar
  15. 15.
    Miracle, D.B. and Lipsitt, H.A., Mechanical properties of fine-grained substoichiometric titanium carbide, J. Am. Ceram. Soc., 1983, vol. 66, no. 7, pp. 592–597.CrossRefGoogle Scholar
  16. 16.
    Das, G., Mazdiyasni, K.S., and Lipsitt, H.A., Mechanical properties of polycrystalline titanium carbide, J. Am. Ceram. Soc., 1982, vol. 65, no. 2, pp. 104–110.CrossRefGoogle Scholar
  17. 17.
    Cheng, L., Xie, Z., Liu, G., Liu, W., and Xue, W., Densification and mechanical properties of TiC by SPSeffects of holding time, sintering temperature and pressure condition, J. Eur. Ceram. Soc., 2012, vol. 32, pp. 3399–3406.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. I. Istomina
    • 1
    Email author
  • P. V. Istomin
    • 1
  • A. V. Nadutkin
    • 1
  • V. E. Grass
    • 1
  1. 1.Institute of Chemistry, Komi Scientific Center, Ural BranchRussian Academy of SciencesSyktyvkar, Komi RepublicRussia

Personalised recommendations