Advertisement

Inorganic Materials

, Volume 52, Issue 7, pp 700–707 | Cite as

Structure of heterosystems formed by a SnO2 film and island metal (Ag, Au, or Pd) condensate

  • V. M. Ievlev
  • S. B. Kushchev
  • A. A. Sinel’nikov
  • S. A. Soldatenko
  • S. V. Ryabtsev
  • M. A. Bosykh
  • A. M. SamoilovEmail author
Article

Abstract

We have studied the phase composition and microstructure of thin tin(IV) oxide films surfacemodified with silver, gold, and palladium nanoislands. Using high-energy electron diffraction, we have shown for the first time that the thermal oxidation of the Sn films leads to the formation of nanocrystalline multiphase SnO2 films in which the major phase is orthorhombic. Also present are (in order of decreasing content) tetragonal and cubic phases. Blocks of SnO2(O) subgrains with 〈101〉 texture contain dislocations and stacking faults, which are interpreted as layers of the tetragonal phase. It has been shown that vacuum condensation makes it possible to modify the surface of SnO2 films with noble metals and obtain homogeneous nanoisland coatings characterized by a unimodal, uniform island size distribution.

Keywords

gas sensors semiconducting metal oxides microstructure thin films tin(IV) oxide metal nanoislands high-energy electron diffraction transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Myasnikov, I.A., Sukharev, V.Ya., Kupriyanov, L.Yu., and Zav’yalov, S.A., Poluprovodnikovye sensory v fizikokhimicheskikh issledovaniyakh (Semiconductor Sensors in Physicochemical Studies), Moscow: Nauka, 1991.Google Scholar
  2. 2.
    Rumyantseva, M.N., Makeeva, E.A., Badalyan, S.M., Zhukova, A.A., and Gaskov, A.M., Nanocrystalline SnO2 and In2O3 as materials for gas sensors: the relationship between microstructure and oxygen chemisorption, Thin Solid Films, 2009, vol. 518, pp. 1283–1288.CrossRefGoogle Scholar
  3. 3.
    Papadopoulos, C.A. and Avaritsiotis, J.N., A model for the gas sensing properties of tin oxide thin films with surface catalysts, Sens. Actuators, B, 1995, vol. 28, pp. 201–210.CrossRefGoogle Scholar
  4. 4.
    Basu, P.K., Jana, S.K., Saha, H., and Basu, S., Low temperature methane sensing by electrochemically grown and surface modified ZnO thin films, Sens. Actuators, B, 2008, vol. 135, pp. 81–88.CrossRefGoogle Scholar
  5. 5.
    Sun, L., Qiu, F., and Quan, B., Investigation of a new catalytic combustion-type CH4 gas sensor with low power consumption, Sens. Actuators, B, 2000, vol. 66, pp. 289–292.CrossRefGoogle Scholar
  6. 6.
    Sung, J.-H., Lee, Y.-S., Lim, J.-W., Hong, Y.-H., and Lee, D.-D., Sensing characteristics of tin dioxide/gold sensor prepared by coprecipitation method, Sens. Actuators, B, 2000, vol. 66, pp. 149–152.CrossRefGoogle Scholar
  7. 7.
    Bose, S., Chakraborty, S., Ghosh, B.K., Dasc, D., Sen, A., and Maiti, H.S., Methane sensitivity of Fedoped SnO2 thick films, Sens. Actuators, B, 2005, vol. 105, pp. 346–350.CrossRefGoogle Scholar
  8. 8.
    Chakraborty, S., Mandal, I., Ray, I., Majumdar, S., Sen, A., and Maiti, H.S., Improvement of recovery time of nanostructured tin dioxide-based thick film gas sensors through surface modification, Sens. Actuators, B, 2007, vol. 127, pp. 554–558.CrossRefGoogle Scholar
  9. 9.
    Abbaszadeha, D., Ghasempoura, R., Rahimi, F., Iraji zad, A., Effective factors on methane sensing of tin-oxide activated by palladium in sol–gel process, Sens. Transducers J., 2006, vol. 73, pp. 819–825.Google Scholar
  10. 10.
    Kim, J.C., Jun, H.K., Huh, J.-S., and Lee, D.D., Tin oxide-based methane gas sensor promoted by aluminasupported Pd catalyst, Sens. Actuators, B, 1997, vol. 45, pp. 271–277.CrossRefGoogle Scholar
  11. 11.
    Papadopoulos, C.A., Vlachos, D.S., and Avaritsiotis, J.N., Comparative study of various metal-oxide-based gassensor architectures, Sens. Actuators, B, 1996, vol. 32, pp. 61–69.CrossRefGoogle Scholar
  12. 12.
    De Angelis, L. and Riva, R., Selectivity and stability of tin dioxide sensor for methane, Sens. Actuators, B, 1995, vol. 28, pp. 25–29.CrossRefGoogle Scholar
  13. 13.
    Ivanovskaya, M.I., Bogdanov, P.A., Orlik, D.R., Gurlo, A.Ch., and Romanovkaya, V.V., Structure and properties of sol–gel obtained SnO2 and SnO2–Pd films, Thin Solid Films, 1997, vol. 296, pp. 41–43.CrossRefGoogle Scholar
  14. 14.
    Weisz, P.B., Effects of electronic charge transfer between adsorbate and solid on chemisorptions and catalysis, J. Chem. Phys., 1953, vol. 21, pp. 1526–1531.Google Scholar
  15. 15.
    Semancik, S. and Fjberget, T.B., Model studies of SnO2-based gas sensors: vacancy defects and Pd additive effects, Sens. Actuators, B, 1990, vol. 12, pp. 97–102.CrossRefGoogle Scholar
  16. 16.
    Rumyantseva, M.N. and Gaskov, A.M., Chemical modification of nanocrystalline metal oxides: influence of defect structure and surface chemistry on gassensing properties, Izv. Akad. Nauk, Ser. Khim., 2008, vol. 57, no. 6, pp. 1086–1105.Google Scholar
  17. 17.
    Marikutsa, A.V., Rumyantseva, M.N., Yashina, L.V., and Gaskov, A.M., Role of surface hydroxyl groups in promoting room temperature CO sensing by Pd-modified nanocrystalline SnO2, J. Solid State Chem., 2010, vol. 183, pp. 2389–2399.CrossRefGoogle Scholar
  18. 18.
    Badalyan, S.M., Rumyantseva, M.N., Nikolaev, S.A., Marikutsa, A.V., Smirnov, V.V., Alikhanian, A.S., and Gaskov, A.M., Effect of Au and NiO catalysts on the NO2 sensing properties of nanocrystalline SnO2, Neorg. Mater., 2010, vol. 46, no. 3, pp. 232–236.CrossRefGoogle Scholar
  19. 19.
    Fizicheskie velichiny. Spravochnik (Physical Quantities: A Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.Google Scholar
  20. 20.
    Powder Diffraction File, Alphabetical Index Inorganic Compounds, 1977, JCPDS.Google Scholar
  21. 21.
    Shen, P., Hwang, S.-L., Chu, H.-T., Yui, T.-F., Pan, C., and Huang, W.-L., On the transformation pathways of α-PbO2-type TiO2 at the twin boundary of rutile bicrystals and the origin of rutile bicrystals, Eur. J. Mineral., 2005, vol. 17, pp. 543–552.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. M. Ievlev
    • 1
    • 2
  • S. B. Kushchev
    • 3
  • A. A. Sinel’nikov
    • 1
  • S. A. Soldatenko
    • 1
  • S. V. Ryabtsev
    • 1
  • M. A. Bosykh
    • 3
  • A. M. Samoilov
    • 1
    Email author
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations