Inorganic Materials

, Volume 52, Issue 7, pp 677–685 | Cite as

Crystallization behavior, mechanical properties, and corrosion resistance of an amorphous Fe76.5P13.6Si4.8Mn2.4V0.2C2.5 alloy

  • V. M. Ievlev
  • S. V. KannykinEmail author
  • T. N. Il’inova
  • M. S. Volodina
  • E. V. Bobrinskaya
  • A. S. Baikin
  • V. V. Vavilova
  • D. V. Serikov


We have studied the mechanical properties and corrosion resistance of an amorphous Fe76.5P13.6Si4.8Mn2.4V0.2C2.5 alloy and their response to nanocrystallization as a result of brief lamp processing and heat treatment. The results demonstrate that the lamp processing time needed to obtain a given phase composition through partial crystallization of the amorphous alloy is two orders of magnitude shorter than the corresponding heat treatment time. We have found lamp processing conditions that ensure the formation of an amorphous–nanocrystalline composite with a twofold increase in hardness, without loss of plasticity. It has been shown that, with increasing loading rate during nanoindentation, the hardness of the alloy decreases because of the increase in plasticity, which shows up as the formation of a larger number of shear bands. Under uniaxial tension, the material exhibits microplasticity, which may be due to intercluster sliding, with the amorphous structure retained. The corrosion resistance of the as-prepared amorphous alloy in a medium contaminated with sulfur dioxide exceeds that of the partially crystallized alloys.


amorphous alloy corrosion resistance lamp processing microplasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glezer, A.M. and Shurygina, N.A., Amorfno-nanokristallicheskie splavy (Amorphous–Nanocrystalline Alloys), Moscow: Fizmatlit, 2013.Google Scholar
  2. 2.
    Schuh, C.A., Lund, A.C., and Nieh, T.G., New regime of homogeneous flow in the deformation map of metallic glasses, Acta Mater., 2004, vol. 52, pp. 5879–5891.CrossRefGoogle Scholar
  3. 3.
    Schuh, C.A. and Nieh, T.G., A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater., 2003, vol. 51, pp. 87–99.CrossRefGoogle Scholar
  4. 4.
    Xing, D.M., Zhang, T.H., Li, W.H., et al., Characterization of plastic flow in two Zr-based bulk metallic glasses, Sci. China, Ser. E: Technol. Sci., 2006, vol. 49, pp. 414–420.Google Scholar
  5. 5.
    Wei, B.C., Zhang, L.C., Zhang, T.H., et al., Strain rate dependence of plastic flow in Ce-based bulk metallic glass during nanoindentation, J. Mater. Res., 2007, vol. 22, pp. 258–263.CrossRefGoogle Scholar
  6. 6.
    Dai, L.H., Liu, L.F., Yan, M., et al., Serrated plastic flow in a Zr-based bulk metallic glass during nanoindentation, Chin. Phys. Lett., 2004, vol. 21, pp. 1593–1595.CrossRefGoogle Scholar
  7. 7.
    Gao, Y.F., Yang, B., and Nieh, T.G., Thermomechanical instability analysis of inhomogeneous deformation in amorphous alloys, Acta. Mater., 2007, vol. 55, pp. 2319–2327.CrossRefGoogle Scholar
  8. 8.
    Ashby, M.F. and Greer, A.L., Metallic glasses as structural materials, Scr. Mater., 2006, vol. 54, pp. 321–326.CrossRefGoogle Scholar
  9. 9.
    Vavilova, V.V., Ievlev, V.M., Kannykin, S.V., Il’inova, T.N., Zabolotnyi, V.T., Korneev, V.P., et al., Nanocrystallization and change in the properties of an Fe80.2P17.1Mo2.7 amorphous alloy during heat or photon treatment, Russ. Metall. (Engl. Transl.), 2014, no. 11, pp. 888–894.CrossRefGoogle Scholar
  10. 10.
    Antonova, M.S., Belonogov, E.K., Boryak, A.V., Vavilova, V.V., Kannykin, S.V., and Palii, N.A., Photoactivated nanocrystallization and hardness of Fe78P20Si2 alloy, Inorg. Mater., 2015, vol. 51, no. 3, pp. 283–287.CrossRefGoogle Scholar
  11. 11.
    Glezer, A.M. and Permyakova, I.E., Nanokristally, zakalennye iz rasplava (Liquid-Quenched Nanocrystals), Moscow: FIZMATLIT, 2012.Google Scholar
  12. 12.
    Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.CrossRefGoogle Scholar
  13. 13.
    Huang, S., Structure and Structure Analysis of Amorphous Materials, Oxford: Clarendon, 1984, p.48.Google Scholar
  14. 14.
    Abrosimova, G.E., Aronin, A.S., and Kholstin, N.N., On the determination of the volume fraction of the crystalline phase in amorphous–crystalline alloys, Phys. Solid State, 2010, vol. 52, no. 3, pp. 445–451.CrossRefGoogle Scholar
  15. 15.
    Wojdyr, M., Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr., 2010, vol. 43, pp. 1126–1128.CrossRefGoogle Scholar
  16. 16.
    Darinskiy, B.M. and Yudin, L.Yu., Mechanism of the enhancement of amorphous alloy crystallization under illumination, Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 9, pp. 1299–1303.CrossRefGoogle Scholar
  17. 17.
    Vavilova, V.V., Ievlev, V.M., Kalinin, Yu.E., Kushchev, S.B., Darinskii, B.M., Palii, N.A., Pokazan’eva, S.A., and Yudin, L.Yu., Effect of pulsed photon irradiation on the formation of a nanocrystalline structure in Fe–P–Nb amorphous alloys, Russ. Metall. (Engl. Transl.), 2011, no. 5, pp. 471–478.CrossRefGoogle Scholar
  18. 18.
    Schuh, C.A., Lund, A.C., and Nieh, T.G., New regime of homogeneous flow in the deformation map of metallic glasses, Acta. Mater., 2004, vol. 52, pp. 5879–5891.CrossRefGoogle Scholar
  19. 19.
    Golovin, Yu.I., Nanoindentirovanie i ego vozmozhnosti (Nanoindentation and Its Potentialities), Moscow: Mashinostroenie, 2009.Google Scholar
  20. 20.
    Suzuki K., Fuzimori, H., and Hashimoto, K., Amorfnye metally (Amorphous Metals), Moscow: Metallurgiya, 1987.Google Scholar
  21. 21.
    Takeuchi, S. and Edagawa, K., Atomistic simulation and modeling of localized shear deformation in metallic glasses, Prog. Mater. Sci., 2011, vol. 56, no. 6, pp. 785–816.CrossRefGoogle Scholar
  22. 22.
    Ievlev, V.M., Kostyuchenko, A.V., Darinskii, B.M., and Barinov, S.M., Hardness and microplasticity of nanocrystalline and amorphous calcium phosphate coatings, Phys. Solid State, 2014, vol. 56, no. 2, pp. 321–329.CrossRefGoogle Scholar
  23. 23.
    Aleynikova, K.B., Zmeykin, A.A., Zinchenko, E.N., and Ievlev, V.M., Analysis of the atomic structure of metallic glass of composition Al87Ni10Nd3 with the use of a fragmentary model, Glass Phys. Chem., 2012, vol. 38, no. 1, pp. 71–76.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. M. Ievlev
    • 1
    • 2
  • S. V. Kannykin
    • 2
    Email author
  • T. N. Il’inova
    • 2
  • M. S. Volodina
    • 2
  • E. V. Bobrinskaya
    • 2
  • A. S. Baikin
    • 3
  • V. V. Vavilova
    • 3
  • D. V. Serikov
    • 4
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Voronezh State UniversityVoronezhRussia
  3. 3.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  4. 4.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations