Inorganic Materials

, Volume 52, Issue 7, pp 655–660 | Cite as

Carbothermal synthesis of nanoparticulate silicon carbide in a self-contained protective atmosphere

  • V. N. AnfilogovEmail author
  • A. S. Lebedev
  • V. M. Ryzhkov
  • I. A. Blinov


We report a process for the preparation of ultrafine silicon carbide powder in a self-contained protective atmosphere. The protective atmosphere is ensured by the silicon monoxide released during the carbothermal synthesis. A reactor design is proposed in which an excess silicon monoxide pressure is generated in order to prevent atmospheric oxygen from entering the reactor. The reactor makes it possible to synthesize silicon carbide in furnaces operating in air. The use of pure starting materials has allowed us to obtain silicon carbide nanofibers ≃ 100 nm in diameter, containing no more than 0.01 wt % impurities.


silicon carbide carbothermal synthesis self-contained protective atmosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrievskii, R.A., Synthesis, structure, and properties of nanoparticulate silicon carbide, Usp. Khim., 2009, no. 9, pp. 799–900.Google Scholar
  2. 2.
    Ageev, O.A., Belyaev, A.E., Boltavets, N.S., et al., Karbid kremniya: tekhnologii, svoistva, primenenie (Silicon Carbide: Technologies, Properties, and Applications), Kiev: Nats. Akad. Nauk Ukrainy, 2010.Google Scholar
  3. 3.
    Sivkov, A.A., Nikitin, D.S., Pak, A.Ya., and Rakhmatulin, I.A., Direct plasmadynamic synthesis of ultradisperse silicon carbide, Tech. Phys. Lett., 2013, vol. 39, no. 1, pp. 105–107.CrossRefGoogle Scholar
  4. 4.
    Pavelko, R.G., Sevast’yanov, V.G., Ezhov, Yu.S., and Kuznetsov, N.T., Silicon carbide transport during carbothermic reduction of SiO2: thermodynamic evaluation and experimental study, Inorg. Mater., 2007, vol. 43, no. 7, pp. 700–703.CrossRefGoogle Scholar
  5. 5.
    Petrov, A.P., Kevorkyan, V., and Kolar, D., Preparation of ultrafine silicon carbide powders by a carbothermal process, Inorg. Mater., 1992, vol. 28, no. 4, pp. 782–788.Google Scholar
  6. 6.
    Sevast'yanov, V.G., Ezhov, Yu.S., Pavelko, R.G., and Kuznetsov, N.T., Perchlorosilanes and perchlorocarbosilanes as precursors for SiC synthesis, Inorg. Mater., 2007, vol. 43, no. 4, pp. 369–372.CrossRefGoogle Scholar
  7. 7.
    Wei, J., Li, K., Li, H., Hou, D., Zang, Y., and Wang, C., Large-scale synthesis and photoluminescence properties of hexagonal-shaped SiC nanowires, J. Alloys Compd., 2008, vol. 462, pp. 271–274.CrossRefGoogle Scholar
  8. 8.
    Meng, A., Zhang, M., Gao, W., Sun, S., and Li, Z., Large-scale synthesis of ß-SiC nanochains and their Raman/photoluminescence properties, Nanoscale Res. Lett., 2011, vol. 6, paper34.Google Scholar
  9. 9.
    Anfilogov, V.N. and Lebedev, A.S., RF Patent 2 537 616, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. N. Anfilogov
    • 1
    Email author
  • A. S. Lebedev
    • 1
  • V. M. Ryzhkov
    • 1
  • I. A. Blinov
    • 1
  1. 1.Institute of Mineralogy, Ural BranchRussian Academy of Sciences, Ilmen State ReserveMiass, Chelyabinsk oblastRussia

Personalised recommendations