Skip to main content
Log in

Influence of the size and charge of nonstoichiometric silver sulfide nanoparticles on their interaction with blood cells

  • Published:
Inorganic Materials Aims and scope

Abstract

Silver sulfide (Ag2S) nanoparticles synthesized using different precursors have been characterized by dynamic light scattering measurements and high-resolution transmission electron microscopy. In addition to Ag2S nanoparticles, we have detected Ag2S/Ag heterostructures. Using optical microscopy, we have examined interaction of the nanoparticles with red cells of peripheral blood. The results of the interaction have been shown to depend on the particle size and charge. A red cell solution containing large, negatively charged particles coagulated, whereas small, positively charged Ag2S nanoparticles were concentrated around red cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, W.P., Zhang, Z., Low, H.Y., and Chin, W.S., Preparation of Ag2S nanocrystals of predictable shape and size, Angew. Chem., 2004, vol. 43, pp. 5685–5689.

    Article  CAS  Google Scholar 

  2. Lou, W.J., Wang, X.B., Chen, M., Liu, W.M., and Hao, J.C., A simple route to synthesize size-controlled Ag2S core–shell nanocrystals, and their self-assembly, Nanotechnology, 2008, vol. 19, paper 225 607.

  3. Kryukov, A.I. et al., Optical and catalytic properties of Ag2S nanoparticles, J. Mol. Catal. A: Chem., 2004, vol. 221, no. 1, pp. 209–221.

    Article  CAS  Google Scholar 

  4. Motte, L. and Urban, J., Silver clusters on silver sulfide nanocrystals: synthesis and behavior after electron beam irradiation, J. Phys. Chem. B, 2005, vol. 109, pp. 21499–21501.

    Article  CAS  Google Scholar 

  5. Terabe, K., Nakayama, T., Hasegawa, T., and Aono, M., Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction, J. Appl. Phys., 2002, vol. 91, pp. 10 110–10 114.

    Article  CAS  Google Scholar 

  6. Tang, A. et al., Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds, Nanotechnology, 2013, vol. 24, no. 35, pp. 355602–355610.

    Article  Google Scholar 

  7. Du, Y. et al., Near-infrared photoluminescent Ag2S quantum dots from a single source precursor, J. Am. Chem. Soc., 2010, vol. 132, no. 5, pp. 1470–1471.

    Article  CAS  Google Scholar 

  8. Wang, C. et al., Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: tunable photoluminescence from red to near infrared, Small, 2012, vol. 8, no. 20, pp. 3137–3142.

    Article  CAS  Google Scholar 

  9. Yarema, M. et al., Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis, ACS Nano, 2011, vol. 5, no. 5, pp. 3758–3765.

    Article  CAS  Google Scholar 

  10. Li, G., Lei, Z., and Wang, Q.M., Luminescent molecular Ag–S nanocluster [Ag62S13 (SBut)32](BF4)4, J. Am. Chem. Soc., 2010, vol. 132, no. 50, pp. 17678–17679.

    Article  CAS  Google Scholar 

  11. Zhang, Y., Hong, G., Zhang, Y., Chen, G., Li, F., Dai, H., and Wang, Q., Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window, ACS Nano, 2012, vol. 6, no. 5, pp. 3695–3702.

    Article  CAS  Google Scholar 

  12. Li, C., Zhang, Y., Wang, M., Zhang, Y., Chen, G., Li, L., Wu, D., and Wang, Q., In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window, Biomaterials, 2014, vol. 35, pp. 393–400.

    Article  CAS  Google Scholar 

  13. Pang, M., Hu, J., and Zeng, H.C., Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers, J. Am. Chem. Soc., 2010, vol. 132, no. 31, pp. 10 771–10 785.

    Article  CAS  Google Scholar 

  14. Ma, X. et al., Facile preparation of Ag2S/Ag semiconductor/metal heteronanostructures with remarkable antibacterial properties, ChemPhysChem, 2012, vol. 10, pp. 2531–2535.

    Article  Google Scholar 

  15. Liu, B. and Ma, Z., Synthesis of Ag2S–Ag nanoprisms and their use as DNA hybridization probes, Small, 2011, vol. 7, no. 11, pp. 1587–1592.

    Article  CAS  Google Scholar 

  16. Rempel, S.V., Kozhevnikova, N.S., Aleksandrova, N.N., and Rempel, A.A., Fluorescent CdS nanoparticles for cell imaging, Inorg. Mater., 2011, vol. 47, no. 3, pp. 223–226.

    Article  CAS  Google Scholar 

  17. Rempel, S.V., Aleksandrova, N.N., and Rempel, A.A., Application of CdS-based quantum dots in cytological analysis, Dal’nevostochnyi Zh. Infekts. Patol., 2012, no. 20, pp. 106–109.

    Google Scholar 

  18. Rempel, S.V., Aleksandrova, N.N., Poryvaeva, A.P., and Rempel, A.A., State of a cell subject to cytomegalovirus infection studied using CdS-based quantum dots, Vestn. Ural’sk. Med. Akad. Nauki, 2014, vol. 48, no. 2, pp. 190–192.

    Google Scholar 

  19. Belyaeva, T.N., Salova, A.V., Leont’eva, E.A., Mozhenok, T.M., Kornilova, E.S., and Krolenko, S.A., Nontarget quantum dots in confocal microscopy investigation of living cells, Tsitologiya, 2009, vol. 51, no. 10, pp. 830–837.

    Google Scholar 

  20. Choi, H.S., Liu, W., Misra, P., et al., Renal clearance of quantum dots, Nat. Biotechnol., 2007, vol. 25, no. 10, pp. 1165–1170.

    Article  CAS  Google Scholar 

  21. Panté N. and Kann, M., Nuclear pore complex is able to transport macromolecules with diameters of ~39 nm, Mol. Biol. Cell, 2002, vol. 13, no. 2, pp. 425–434.

    Article  Google Scholar 

  22. Vorob’ev, I.A., Rafalovskaya-Orlovskaya, E.P., Gladkikh, A.A., et al., Fluorescent nanocrystals in microscopy and cytometry, Tsitologiya, 2011, vol. 53, no. 5, pp. 392–403.

    Google Scholar 

  23. Sadovnikov, S.I. and Rempel, A.A., Synthesis of nanocrystalline silver sulfide, Inorg. Mater., 2015, vol. 51, no. 8, pp. 759–766.

    Article  CAS  Google Scholar 

  24. Sadovnikov, S.I., Gusev, A.I., and Rempel, A.A., Nonstoichiometry of nanocrystalline monoclinic silver sulfide, Phys. Chem. Chem. Phys., 2015, vol. 17, no. 19, pp. 12466–12471.

    Article  CAS  Google Scholar 

  25. Sadovnikov, S.I., Gusev, A.I., and Rempel, A.A., Artificial silver sulfide Ag2S: crystal structure and particle size in deposited powders, Superlatt. Microstruct., 2015, vol. 83, pp. 35–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rempel.

Additional information

Original Russian Text © S.V. Rempel, N.N. Aleksandrova, Yu.V. Kuznetsova, E.Yu. Gerasimov, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 2, pp. 131–135.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rempel, S.V., Aleksandrova, N.N., Kuznetsova, Y.V. et al. Influence of the size and charge of nonstoichiometric silver sulfide nanoparticles on their interaction with blood cells. Inorg Mater 52, 101–105 (2016). https://doi.org/10.1134/S0020168516020126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516020126

Keywords

Navigation