Skip to main content

Structure, phase composition, and nanohardness of vacuum-annealed multilayer fullerite/aluminum films

Abstract

The influence of the number of layers and thermal annealing on the structure, elemental and phase compositions, and nanohardness of multilayer fullerite/aluminum films has been studied by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray microanalysis, and nanoindentation. The results demonstrate that sequential growth of five aluminum layers and four fullerite layers, each 50 nm in thickness, on oxidized single-crystal silicon substrates leads to the formation of textured films, which retain 111 texture after vacuum annealing at 620 K (τ = 5 h). In the case of the growth of bilayer films of greater thickness, C60(200 nm)/Al(300 nm), the fullerite and aluminum have a polycrystalline structure with no growth texture. Thermal annealing of the bilayer films leads to the formation of a new phase, Al x C60. The materials studied here possess enhanced nanohardness compared to pure aluminum and fullerite films.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Sidorov, L.N., Yurovskaya, M.A., Borshchevskii, A.Ya., Trushkov, I.V., and Ioffe, I.N., Fullereny (Fullerenes), Moscow: Ekzamen, 2005.

    Google Scholar 

  2. 2.

    Baran, L.V., Annealing effect on the structure, phase composition, and nanohardness of titanium/fullerite films, Inorg. Mater., 2010, vol. 46, no. 8, pp. 824–832.

    Article  CAS  Google Scholar 

  3. 3.

    Baran, L.V., Structural-phase state of chromium–fullerite–chromium films subjected to heat treatment in vacuum, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2013, vol. 7, no. 6, pp. 1188–1193.

    Article  CAS  Google Scholar 

  4. 4.

    Ivanova, V.N., Fullerene compounds with transition metals MnC60: preparation, structure, and properties, J. Struct. Chem., 2000, vol. 41, no. 1, pp. 135–142.

    Article  CAS  Google Scholar 

  5. 5.

    Baran, L.V., Distinctive features of the formation of structural and phase states of copper-containing fullerite films, Nanostrukt. Materialoved., 2011, no. 1, pp. 50–61.

    Google Scholar 

  6. 6.

    Shevtsov, Yu.V., Trubin, S.V., Shubin, Yu.V., Berdinsky, A.S., Ayupov, B.M., Fink, D., Chan, Kh.G., and Kravchenko, V.S., deposition, J. Struct. Chem., 2004, vol. 45, suppl., pp. S76–S83.

  7. 7.

    Quintavalle, D., Simon, F., Jánossy, A., Borondics, F., Baserga, A., Kamarás, K., and Pekker, S., The fulleride polymer Mg5C60, Phys. Status Solidi B, 2007, vol. 244, no. 11, pp. 3853–3856.

    Article  CAS  Google Scholar 

  8. 8.

    Kulbachinskii, V.A., Kytin, V.G., Blank, V.D., Buga, S.G., and Popov, M.Yu., Thermoelectric properties of bismuth telluride nanocomposites with fullerene, Semiconductors, 2011, vol. 45, no. 9, pp. 1194–1198.

    Article  CAS  Google Scholar 

  9. 9.

    Zakharova, I.B., Ziminov, V.M., Romanov, N.M., Kvyatkovskii, O.E., and Makarova, T.L., Optical and structural properties of fullerene films doped with cadmium telluride, Phys. Solid State, 2014, vol. 56, no. 5, pp. 1064–1070.

    Article  CAS  Google Scholar 

  10. 10.

    Nikolaeva, A.V. and Michel, K.H., Superexchange and electron correlations in alkali fullerides AC60, A = K, Rb, Cs, J. Chem. Phys., 2005, vol. 122, paper 064 310.

  11. 11.

    Wang, X.L. and Tua, J.P., Characterization and hydrogen storage properties of Pt–C60 compound, Phys. Rev. Lett., 2009, vol. 102, no. 14, paper 145 901.

  12. 12.

    Popov, M., Buga, S., Vysikaylo, Ph., Stepanov, P., Tatyanin, E., Medvedev, V., Denisov, V., Kirichenko, A., Aksenenkov, V., Skok, V., and Blank, V., C60-doping of nanostructured Bi–Sb–Te thermoelectrics, Phys. Status Solidi A, 2011, vol. 208, pp. 2783–2789.

    Article  CAS  Google Scholar 

  13. 13.

    Popov, M., Medvedev, V., Blank, V., Denisov, V., Kirichenko, A., Tat’yanin, E., Aksenenkov, V., Perfilov, S., Lomakin, R., D’yakov, E., and Zaitsev, V., Fulleride of aluminum nanoclusters, J. Appl. Phys., 2010, vol. 108, no. 9, pp. 094 317–094 323.

    Article  Google Scholar 

  14. 14.

    Khalid, F.A., Beffort, O., Klotz, U.E., Keller, B.A., Gasser, P., and Vaucher, S., Study of microstructure and interfaces in an aluminium–C60 composite material, Acta Mater., 2003, vol. 51, pp. 4575–4582.

    Article  CAS  Google Scholar 

  15. 15.

    Nishinaga Jiro, Aihara Tomoyuki, Yamagata Hiroshi, and Horikoshi Yoshiji, Mechanical and optical charac-teristics of Al-doped C60 films, J. Cryst. Growth, 2005, vol. 278, nos. 1–4, pp. 633–637.

    Article  CAS  Google Scholar 

  16. 16.

    Borisova, P.A., Blanterb, M.S., and Somenkov, V.A., Neutron diffraction study of interaction between amorphous and crystalline C60 fullerenes and aluminum, Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 11, pp. 1205–1208.

    Article  CAS  Google Scholar 

  17. 17.

    Golovin, Yu.I., Vasyukov, V.M., Isaeva, E.Yu., Kolmakov, A.V., Stolyarov, R.A., Tikhomirova, K.V., Tkachev, A.G., and Shuklinov, A.V., Modification of aluminum antifriction alloys by carbon nanomaterials, Russ. Metall. (Engl. Transl.), 2011, no. 4, pp. 334–336.

    Article  Google Scholar 

  18. 18.

    Bulychev, S.I. and Alekhin, V.P., Ispytanie materialov nepreryvnym vdavlivaniem indentora (Continuous Indentation Testing of Materials), Moscow: Mashinostroenie, 1990.

    Google Scholar 

  19. 19.

    Baran, L.V., Effect of metal content on the structure, phase composition, and local mechanical properties of fullerite–aluminum films, Perspekt. Mater., 2014, no. 12, pp. 51–58.

    Google Scholar 

  20. 20.

    Levashov, E.A., Petrzhik, M.I., Tyurina, M.Ya., Kiryukhantsev-Korneev, F.V., Tsygankov, P.A., and Rogachev, A.S., Multilayer nanostructured heat-generating coatings: preparation and mechanical and tribological properties, Metallurg, 2010, no. 9, pp. 66–74.

    Google Scholar 

  21. 21.

    Bykov, Yu.A., Structural nanomaterials, Metall. Mashinostr., 2011, no. 1, pp. 9–19.

    Google Scholar 

  22. 22.

    Andreev, A.A. and Shulaev, V.M., Submicron-layer TiN–CrN composite coatings on steel, Fiz. Inzh. Poverkhn., 2005, vol. 3, nos. 1–2, pp. 41–43.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. V. Baran.

Additional information

Original Russian Text © L.V. Baran, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 2, pp. 144–150.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baran, L.V. Structure, phase composition, and nanohardness of vacuum-annealed multilayer fullerite/aluminum films. Inorg Mater 52, 113–119 (2016). https://doi.org/10.1134/S0020168516020011

Download citation

Keywords

  • Fullerene
  • Thermal Annealing
  • Multilayer Film
  • Aluminum Layer
  • Aluminum Atom