Skip to main content
Log in

Zone recrystallization modeling and optimization based on the concept of average impurity concentration in the ingot portion being refined

  • Published:
Inorganic Materials Aims and scope

Abstract

We present a mathematical model and results of computational experiments aimed at investigating multipass zone refining kinetics based on the concept of average impurity concentration in the ingot portion being refined and demonstrate that ultrapurification of an ingot at a small molten zone length has an induction period. Using stepwise optimization of zone recrystallization with a molten zone length varying from pass to pass, we find a zone length control function that minimizes the number of zone passes needed to ensure a given purity level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pfann, W.G., Zone Melting, New York: Wiley, 1966, 2nd ed.

    Google Scholar 

  2. Vigdorovich, V.N., Sovershenstvovanie zonnoi perekristallizatsii (Optimization of Zone Recrystallization), Moscow: Metallurgiya, 1974.

    Google Scholar 

  3. Roumie, M., Zahraman, K., Zaiour, A., Mohanna, Y., and Hage-Ali, M., Study of segregation process of impurities in molten tellurium after one pass of three conjoint zones in zone refining, J. Cryst. Growth, 2006, vol. 289, pp. 260–268.

    Article  CAS  Google Scholar 

  4. Akimov, D.V., Egorov, N.B., and Obmuch, K.V., Separation of rare-earth elements by zone recrystallization, Fundam. Issled., 2013, nos. 8–3, pp. 529–533.

    Google Scholar 

  5. Andrienko, O.S., Egorov, N.B., Zherin, I.I., Indyk, D.V., Tsepenko, E.A., and D’yachenko, A.S., Selection of magnesium isotopes using MgCl2 · 6H2O recrystallization, Izv. Tomsk. Politekh. Univ., 2007, vol. 311, no. 3, pp. 72–75.

    Google Scholar 

  6. Burris, L., Stockman, C.H., and Dillon, I.G., Contribution to the mathematics of zone melting, Trans. Am. Inst. Min., Metall. Pet. Eng., 1955, vol. 203, pp. 1017–1023.

    Google Scholar 

  7. Braun, I. and Marshall, S., On the mathematical theory of zone-melting, Br. J. Appl. Phys., 1957, vol. 8, pp. 157–162.

    Article  CAS  Google Scholar 

  8. Peizulaev, Sh.I., Taking into account impurity vaporization during zone melting, Izv. Akad. Nauk SSSR, Neorg. Mater., 1967, vol. 3, no. 9, pp. 1523–1532.

    CAS  Google Scholar 

  9. Dozorov, V.A., Kirillov, Yu.P., and Churbanov, M.F., Dynamics of ultrapurification of substances by zone recrystallization controlled using average impurity concentration in the purified portion of the ingot, Vysokochist. Veshchestva, 1990, no. 6, pp. 48–54.

    Google Scholar 

  10. Devyatykh, G.G., Dozorov, V.A., Kirillov, Yu.P., and Churbanov, M.F., Dynamics of purification by multiple zone recrystallizations, Vysokochist. Veshchestva, 1992, no. 2, pp. 7–15.

    Google Scholar 

  11. Cahoon, J.R., Zone melting calculations: an ideal spreadsheet application, Int. J. Comput. Appl. Technol., 2006, vol. 25, pp. 1–8.

    Article  Google Scholar 

  12. Parmee, J.L. and Roberson, J.A., Programming the zone-refining equation for a digital computer, SolidState Electron., 1951, vol. 2, no. 1, pp. 70–71.

    Article  Google Scholar 

  13. Davies, L.W., The efficiency of refining processes, Trans. Am. Inst. Min., Metall. Pet. Eng., 1959, vol. 215, pp. 672–675.

    Google Scholar 

  14. Rodway, G.H. and Hunt, J.D., Optimizing zone refining, J. Cryst. Growth, 1989, vol. 97, pp. 680–688.

    Article  CAS  Google Scholar 

  15. Devyatykh, G.G., Burkhanov, Yu.S., and Burkhanov, G.S., Optimizing zone refining parameters, Vysokochist. Veshchestva, 1991, no. 6, pp. 48–57.

    Google Scholar 

  16. Devyatykh, G.G., Dozorov, V.A., Kirillov, Yu.P., and Churbanov, M.F., Appropriate zone length in purification by multiple zone recrystallizations, Vysokochist. Veshchestva, 1993, no. 1, pp. 59–63.

    Google Scholar 

  17. Ho, C.-D., Yeh, H.-M., and Yeh, T.-L., Numerical analysis on optimal zone lengths for each pass in multipass zone-refining processes, Can. J. Chem. Eng., 1998, vol. 76, pp. 113–119.

    Article  CAS  Google Scholar 

  18. Ho, C.-D., Yeh, H.-M., and Yeh, T.-L., The optimal variation of zone lengths in multipass zone refining processes, Separ. Purif. Technol., 1999, vol. 15, pp. 69–78.

    Article  CAS  Google Scholar 

  19. Ghosh, K., Mani, V.N., and Dhar, S., A modeling approach for the purification of group III metals (Ga and In) by zone refining, J. Appl. Phys., 2008, vol. 104, no. 2, pp. 024 904–024 912.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Kirillov.

Additional information

Original Russian Text © Yu.P. Kirillov, M.F. Churbanov, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 2, pp. 239–245.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillov, Y.P., Churbanov, M.F. Zone recrystallization modeling and optimization based on the concept of average impurity concentration in the ingot portion being refined. Inorg Mater 52, 201–206 (2016). https://doi.org/10.1134/S0020168516010106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516010106

Keywords

Navigation