Skip to main content
Log in

Structural changes in Sr9In(PO4)7 during antiferroelectric phase transition

  • Published:
Inorganic Materials Aims and scope

Abstract

Structural changes in Sr9In(PO4)7 during the antiferroelectric (AFE) phase transition are studied by X-ray powder diffraction, electron microscopy, second-harmonic-generation, and dielectric measurements. Sr9In(PO4)7 complements a group of Ca3(VO4)2-type ferroelectric (FE) phosphates and vanadates and is the first example of an AFE material in this family. Antiparallel shifts of Sr atoms from their average positions and ordering of the P1O4 tetrahedra form two contributions in the structural mechanism of the AFE phase transition: a displacive contribution and an order-disorder constituent, respectively. The displacive and order-disorder type of structural changes may account for the obtained value of the Curie–Weiss constant (C ~ 104 K) which is in between the value usually observed for pure displacive (C ~ 105 K) and that for orderdisorder phase transitions (C ~ 103 K). The structural mechanism of the AFE phase transition in Sr9In(PO4)7 is very similar to that of the FE phase transition in Ca9R(PO4)7 and Ca9R(VO4)7. Both displacive and orderdisorder contributions are responsible for the physical properties of the Ca3(VO4)2-type materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kittel, C., Theory of antiferroelectric crystals, Phys. Rev., 1951, vol. 82, pp. 729–732.

    Article  CAS  Google Scholar 

  2. Sawaguchi, E., Maniwa, H., and Hoshino, S., Antiferroelectric structure of lead zirconate, Phys. Rev., 1951, vol. 83, p. 1078.

    Article  CAS  Google Scholar 

  3. Shirane, G., Sawaguchi, E., and Takagi, Y., Dielectric properties of lead zirconate, Phys. Rev., 1951, vol. 84, pp. 476–481.

    Article  CAS  Google Scholar 

  4. Jankowska-Sumara, I., Antiferroelectric phase transitions in single crystals PbZrO3:Sn revisited, Phase Transitions, 2014, vol. 87, pp. 685–728.

    Article  CAS  Google Scholar 

  5. Sa, T., Qin, N., Yang, G., and Bao, D., W-doping induced antiferroelectric to ferroelectric phase transition in PbZrO3 thin films prepared by chemical solution deposition, Appl. Phys. Lett., 2013, vol. 102, paper 172 906.

  6. Goian, V., Kamba, S., Greicius, S., Nuzhnyy, D., Karimi, S., and Reaney, I.M., Terahertz and infrared studies of antiferroelectric phase transition in multiferroic Bi0.85Nd0.15FeO3, J. Appl. Phys., 2011, vol. 110, paper 074 112.

  7. Xue, F., Liang, L., Gu, Y., Takeuchi, I., Kalinin, S.V., and Chen, L.-Q., Compositionand pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped BiFeO3 system, Appl. Phys. Lett., 2015, vol. 106, paper 012 903.

  8. Ranjan, R., Pandey, D., and Lalla, N.P., Novel features of Sr1–x CaxTiO3 phase diagram: evidence for competing antiferroelectric and ferroelectric interactions, Phys. Rev. Lett., 2000, vol. 84, no. 16, pp. 3726–3729.

    Article  CAS  Google Scholar 

  9. Mishra, S.K., Ranjan, R., Pandey, D., and Kennedy, B.J., Powder neutron diffraction study of the antiferroelectric phase transition in Sr0.75Ca0.25TiO3, J. Appl. Phys., 2002, vol. 91, no. 7, pp. 4447–4452.

    Article  CAS  Google Scholar 

  10. Anwar, S. and Lalla, N.P., Occurrence of a new superlattice phase across the antiferroelectric phase transition in Sr1–x CaxTiO3 (x = 0.30 and 0.40), J. Phys.: Condens. Matter, 2008, vol. 20, paper 325 231.

    Google Scholar 

  11. Shirane, G. and Pepinsky, R., Phase transitions in antiferroelectric PbHfO3, Phys. Rev., 1953, vol. 91, pp. 812–815.

    Article  CAS  Google Scholar 

  12. Samara, G.A., Pressure and temperature dependence of the dielectric properties and phase transitions of the antiferroelectric perovskites: PbZrO3 and PbHfO3, Phys. Rev. B: Solid State, 1970, vol. 1, pp. 3777–3786.

    Article  Google Scholar 

  13. Maczka, M., Kim, T.H., Gagor, A., JankowskaSumara, I., Majchrowski, A., and Kojima, S., Brillouin scattering, DSC, dielectric and X-ray diffraction studies of phase transitions in antiferroelectric PbHfO3:Sn, J. Alloys Compd., 2015, vol. 622, pp. 935–941.

    Article  CAS  Google Scholar 

  14. Wood, E.A., Polymorphism in potassium niobate, sodium niobate, and other ABO3 compounds, Acta Crystallogr., 1951, vol. 4, pp. 353–362.

    Article  CAS  Google Scholar 

  15. Shirane, G., Newnham, R., and Pepinsky, R., Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3, Phys. Rev., 1954, vol. 96, pp. 581–588.

    Article  CAS  Google Scholar 

  16. Megaw, D., The seven phases of sodium niobate, Ferroelectrics, 1974, vol. 7, pp. 87–89.

    Article  CAS  Google Scholar 

  17. Francobe, M.H. and Lewis, G., Structural and electrical properties of silver niobate and silver tantalate, Acta Crystallogr., 1958, vol. 11, pp. 175–178.

    Article  Google Scholar 

  18. Watanabe, S. and Koyama, Y., Commensuration of the antiferroelectric incommensurate phase in Pb(Co1/2W1/2)O3, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, paper 064 108.

  19. Belov, D.A., Shlyakhtina, A.V., Stefanovich, S.Yu., Shchegolikhin, A.N., Knotko, A.V., Karyagina, O.K., and Shcherbakova, L.G., Antiferroelectric phase transition in pyrochlore-like (Dy1–x Cax)2Ti2O7–d (x = 0, 0.1) high temperature conductors, Solid State Ionics, 2011, vol. 192, pp. 188–194.

    Article  CAS  Google Scholar 

  20. Samara, G.A., Vanishing of ferroelectric and antiferroelectric states in KH2PO2-type crystals at high pressure, Phys. Rev. Lett., 1971, vol. 27, pp. 103–106.

    Article  CAS  Google Scholar 

  21. Stasyuk, I.V., Levitskii, R.R., and Moina, A.P., External pressure influence on ferroelectrics and antiferroelectrics of the KH2PO4 family: a unified model, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 59, no. 13, pp. 8530–8540.

    Article  CAS  Google Scholar 

  22. Fukami, T., X-ray study of crystal structure of Nd4D2PO4 in the antiferroelectric phase, J. Phys. Soc. Jpn., 1988, vol. 57, pp. 1287–1290.

    Article  CAS  Google Scholar 

  23. Fukami, T., Refinement of the crystal structure of NH4H2AsO4 above and below antiferroelectric phasetransition temperature, J. Phys. Soc. Jpn., 1989, vol. 58, pp. 3429–3430.

    Article  CAS  Google Scholar 

  24. Hayashi, Y., Kasahara, M., Tokunaga, M., and Tatsuzaki, I., Raman scattering study on the phase transition of NH4H2AsO4, J. Phys. Soc. Jpn., 1988, vol. 57, pp. 1321–1326.

    Article  CAS  Google Scholar 

  25. Kim, S.-H., Lee, K.W., Han, J.H., and Lee, C.E., 1H NMR spin–spin relaxation in TlH2PO4 undergoing separated antiferroelectric and ferroelastic phase transitions, Solid State Commun., 2007, vol. 144, pp. 1–4.

    Article  CAS  Google Scholar 

  26. Tsai, S.-F. and Yu, J.-T., Investigation of the ferroelectric to the antiferroelectric transition in LiNH4SO4 by the ESR of, J. Phys. Soc. Jpn., 1988, vol. 57, pp. 2540–2549.

    Article  CAS  Google Scholar 

  27. Ravez, J., Ferroelectricity in solid state chemistry, C. R. Acad. Sci., Ser. IIc: Chim., 2000, vol. 3, pp. 267–283.

    CAS  Google Scholar 

  28. Yashima, M., Sakai, A., Kamiyama, T., and Hoshikawa, A., Crystal structure analysis of tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction, J. Solid State Chem., 2003, vol. 175, pp. 272–277.

    Article  CAS  Google Scholar 

  29. Glass, A.M., Abrahams, S.C., Ballman, A.A., and Loiacono, G., Calcium orthovanadate, Ca3(VO4)2—a new high-temperature ferroelectric, Ferroelectrics, 1978, vol. 17, pp. 579–582.

    Article  CAS  Google Scholar 

  30. Lazoryak, B.I., Baryshnikova, O.V., Stefanovich, S.Yu., Malakho, A.P., Morozov, V.A., Belik, A.A., Leonidov, I.A., Leonidova, O.N., and Van Tendeloo, G., Ferroelectric and ionic-conductive properties of nonlinear-optical vanadate, Ca9Bi(VO4)7, Chem. Mater., 2003, vol. 15, pp. 3003–3010.

    Article  CAS  Google Scholar 

  31. Lazoryak, B.I., Belik, A.A., Stefanovich, S.Yu., Morozov, V.A., Malakho, A.P., Baryshnikova, O.V., Leonidov, I.A., and Leonidova, O.N., Ferroelectric–ionic conductor phase transitions in optical nonlinear Ca9R(VO4)7 vanadates, Dokl. Phys. Chem., 2002, vol. 384, nos. 4–6, pp. 144–148.

    Article  CAS  Google Scholar 

  32. Lazoryak, B.I., Morozov, V.A., Belik, A.A., Stefanovich, S.Yu., Grebenev, V.V., Leonidov, I.A., Mitberg, E.B., Davydov, S.A., Lebedev, O.I., and Van Tendeloo, G., Ferroelectric phase transition in the whitlockite-type Ca9Fe(PO4)7; crystal structure of the paraelectric phase at 923 K, Solid State Sci., 2004, vol. 6, no. 2, pp. 185–195.

    Article  CAS  Google Scholar 

  33. Morozov, V.A., Belik, A.A., Stefanovich, S.Yu., Grebenev, V.V., Lebedev, O.I., Van Tendeloo, G., and Lazoryak, B.I., High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7, J. Solid State Chem., 2002, vol. 165, no. 2, pp. 278–288.

    Article  CAS  Google Scholar 

  34. Belik, A.A., Takano, M., Boguslavsky, M.V., Stefanovich, S.Yu., and Lazoryak, B.I., New noncentrosymmetric vanadates Sr9R(VO4)7 (R = Tm, Yb, and Lu): synthesis, structure analysis, and characterization, Chem. Mater., 2005, vol. 17, no. 1, pp. 122–129.

    Article  CAS  Google Scholar 

  35. Belik, A.A., Azuma, M., and Takano, M., Phase transitions in Sr-containing phosphates and vanadates with ß-Ca3(PO4)2-related structures, Solid State Ionics, 2004, vol. 172, nos. 1–4, pp. 533–537.

    Article  CAS  Google Scholar 

  36. Stefanovich, S.Yu., Belik, A.A., Azuma, M., Takano, M., Baryshnikova, O.V., Morozov, V.A., Lazoryak, B.I., Lebedev, O.I., and Van Tendeloo, G., Antiferroelectric phase transition in Sr9In(PO4)7, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 70, no. 17, paper 172103.

  37. Teterskii, A.V., Stefanovich, S.Yu., Lazoryak, B.I., and Rusakov, D.A., Whitlockite solid solutions Ca9 MR(PO4)7 (x = 1, 1.5; M= Mg, Zn, Cd; R = Ln, Y) with antiferroelectric properties, Russ. J. Inorg. Chem., 2007, vol. 52, no. 3, pp. 308–314.

    Article  Google Scholar 

  38. Belik, A.A., Izumi, F., Ikeda, T., Okui, M., Malakho, A.P., Morozov, V.A., and Lazoryak, B.I., Whitlockite-related phosphates Sr9A(PO4)7 (A = Sc, Cr, Fe, Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data, J. Solid State Chem., 2002, vol. 168, no. 1, pp. 237–244.

    Article  CAS  Google Scholar 

  39. Belik, A.A., Izumi, F., Ikeda, T., Morozov, V.A., Dilanian, R.A., Torii, S., Kopnin, E.M., Lebedev, O.I., Van Tendeloo, G., and Lazoryak, B.I., Positional and orientational disorder in a solid solution of Sr9+x Ni1.5–x (PO4)7 (x = 0.3), Chem. Mater., 2002, vol. 14, no. 10, pp. 4464–4472.

    Article  CAS  Google Scholar 

  40. Izumi, F. and Ikeda, T., A Rietveld-analysis program RIETAN-98 and its applications to zeolites, Mater. Sci. Forum, 2000, vols. 321–324, pp. 198–205.

    Article  Google Scholar 

  41. Nishibori, E., Takata, M., Kato, K., Sakata, M., Kubota, Y., Aoyagi, S., Kuroiwa, Y., Yamakata, M., and Ikeda, N., The large Debye–Scherrer camera installed at SPring-8 BL02B2 for charge density studies, Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, vols. 467–468, pp. 1045–1048.

    Google Scholar 

  42. Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Oxford: Clarendon, 1977.

    Google Scholar 

  43. Malakho, A.P., Vorontsova, O.P., Morozov, V.A., Stefanovich, S.Yu., and Lazoryak, B.I., Ferroelectric and nonlinear optical properties of Ca9–xZnxBi(VO4)7 vanadates, Russ. J. Inorg. Chem., 2004, vol. 49, no. 2, pp. 125–133.

    Google Scholar 

  44. Vorontsova, O.L., Malakho, A.P., Morozov, V.A., Stefanovich, S.Yu., and Lazoryak, B.I., Ferroelectric and nonlinear optical properties of Ca9–x CdxBi(VO4)7 vanadates, Russ. J. Inorg. Chem., 2004, vol. 49, no. 2, pp. 1793–1802.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Deyneko.

Additional information

Original Russian Text © D.V. Deyneko, V.A. Morozov, S.Yu. Stefanovich, A.A. Belik, B.I. Lazoryak, O.I. Lebedev, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 2, pp. 211–221.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deyneko, D.V., Morozov, V.A., Stefanovich, S.Y. et al. Structural changes in Sr9In(PO4)7 during antiferroelectric phase transition. Inorg Mater 52, 176–185 (2016). https://doi.org/10.1134/S0020168516010039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516010039

Keywords

Navigation