Skip to main content

Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part I. Physical and chemical properties and sensor signal formation

Abstract

The experimental and theoretical concepts of the physical and chemical properties of tin dioxide which favor its use in semiconductor gas sensors are systematized. The interrelations of the band structure, the nature of intrinsic defects, microstructure parameters, and reactivity of nanocrystalline SnO2 during the detection of gases of different chemical nature are considered. The existing concepts which describe the change in electrical properties and the mechanism of the sensor signal formation are analyzed.

This is a preview of subscription content, access via your institution.

References

  1. Ginley, D.S. and Bright, C., Transparent conducting oxides, Mater. Res. Soc. Bull., 2000, vol. 25, pp. 15–18.

    CAS  Google Scholar 

  2. Rauh, R.D., Electrochromic windows: an overview, Electrochim. Acta, 1999, vol. 44, pp. 3165–3176.

    CAS  Google Scholar 

  3. Kalinin, S.V., Shin, J., Jesse, S., Geohegan, D., Baddorf, A.P., Lilach, Y., Moscovits, M., and Kolmakov, A. Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device, J. Appl. Phys., 2005, vol. 98, pp. 044503/1–044503/8.

    Google Scholar 

  4. Popescu, A.-M., Mihaiu, S., and Zuca, S. Microstructure and electrochemical behavior of some SnO2based inert electrodes in aluminum electrolysis, Z. Naturforsch., 2002, vol. 57a, pp. 71–75.

    Google Scholar 

  5. Idriss, H. and Barteau, M.A., Active sites on oxides: from single crystals to catalysts, Adv. Catalysis, 2000, vol. 45, p. 261–331.

  6. Pearch, T.C., Schiffman, S.S., Nagle, H.T., and Gardner, J.W., Handbook of Machine Olfaction: Electronic Nose Technology, Weinheim: Wiley–VCH, 2003, p. 624.

    Google Scholar 

  7. Vol’kshtein, F.F., Electronnye protsessy na poverkhnosti poluprovodnikov (Electronic Processes on Semiconductor Surface), Moscow: Nauka, 1987, p. 431.

    Google Scholar 

  8. Myasnikov, I.A., Sukharev, V.Ya., Kupriyanov, L.Yu,, and Zav’yalov, S.A., Poluprovodnikovye sensory v phiziko–chimicheskikh issledovaniyakh (Semiconductor Sensors in Physicochemical Studies), Moscow: Nauka, 1991, p. 327.

    Google Scholar 

  9. Myasoedov, B.F. and Davydov, A.V., Chemical sensors: Opportunities and prospects, Zh. Anal. Khim., 1990, vol. 45, no. 7, pp. 1259–1266.

    CAS  Google Scholar 

  10. Ragmir, N.S., Mulla, I.S., and Vijayamohanan, K.P., A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires, Sens. Actuators, B, 2005, vol. 107, pp. 708–715.

    Google Scholar 

  11. Prades, J.D., Jimenes-Diaz, R., HernandezRamirez, F., Cirera, A., Romano-Rodriguez, A., Mathur, S., and Morante, J.R., Individual metal oxide nanowires in chemical sensing: breakthrough, challenges and prospects, Nanostruct. Mater. Syst., 2010, vol. 214, pp. 103–110.

    CAS  Google Scholar 

  12. Hernandez-Ramirez, F., Prades, J.D., JimenesDiaz, R., Fischer, T., Romano-Rodriguez, A., Mathur, S., and Morante, J.R., On the role of individual metal oxide nanowires in the scaling down of chemical sensors, Phys. Chem. Chem. Phys., 2009, vol. 11, pp. 7105–7110.

    CAS  Google Scholar 

  13. Hernandez-Ramirez, F., Barth, S., Tarancon, A., Casals, O., Pellicer, E., Rodriguez, J., Romano-Rodriguez, A., Morante, J.R., and Mathur, S., Water vapor detection with individual tin oxide nanowires, Nanotechnology, 2007, vol. 18, pp. 424016–424022.

    Google Scholar 

  14. Prades, J.D., Jimenes-Diaz, R., HernandezRamirez, F., Barth, S., Cirera, A., Romano-Rodriguez, A., Mathur, S., and Morante, J.R., Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires, Sens. Actuators, B, 2009, vol. 140, pp. 337–341.

    CAS  Google Scholar 

  15. Wei, S., Yu, Y., and Zhou, M., CO gas sensing of Pddoped ZnO nanofibers synthesized by electrospinning method, J. Mater. Lett., 2010, vol. 64, pp. 2284–2286.

    CAS  Google Scholar 

  16. Lee, Y., Huang, H., Tan, O.K., and Tse, M.S., Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films, Sens. Actuators, B, 2008, vol. 132, pp. 239–242.

    CAS  Google Scholar 

  17. Ponzoni, A., Russo, V., Bailini, A., Casari, C.S., Ferroni, M., Li Bassi, A., Migliori, A., Morandi, V., Ortolani, L., Sberveglieri, G., and Bottani, C.E., Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles, Sens. Actuators, B, 2011, vol. 153, pp. 340–346.

    CAS  Google Scholar 

  18. Kim, Y.S., Kim, Y.T., and Lee, K., Low-temperature volatile-organic-compound (VOC) gas sensor based on tungsten oxide nanorods, NSTI-Nnnotech., 2005, vol. 3, pp. 169–172.

    CAS  Google Scholar 

  19. Wang, G.X., Park, J.S., Park, M.S., and Gou, X.L., Synthesis and high gas sensitivity of tin oxide nanotubes, Sens. Actuators, B, 2007, vol. 131, pp. 313–317.

    Google Scholar 

  20. Noa, N.D., Van Quy, N., An, M., Song, H., Kang, Y., Cho, Y., and Kim, D., Tin-oxide nanotubes for gas sensor application fabricated using SWNTs as a template, J. Nanosci. Nanotechnol., 2008, vol. 8, pp. 5586–5589.

    Google Scholar 

  21. Moon, C.S., Kim, H.R., Auchterlonie, G., Drennan, J., and Lee, J.H., Highly sensitive and fast responding CO sensors using SnO2 nanosheets, Sens. Actuators, B, 2008, vol. 147, pp. 556–564.

    Google Scholar 

  22. Lee, J.H., Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators, B, 2009, vol. 140, pp. 319–336.

    CAS  Google Scholar 

  23. Wang, G., Yuan, J., Huang, X., Yang, X., Gouma, P.I., and Dudley, M., Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing, J. Phys. Chem. B, 2006, vol. 110, pp. 23777–23782.

    CAS  Google Scholar 

  24. Phase Diagrams of Ternary Copper–Oxygen–Metal Systems, San Francisco: San Francisco Press., 1995, pp. 141–152.

  25. Mizusaki, J., Koinuma, H., Shimoyama, J.I., Kawasaki, M., and Fueki, K., High temperature gravimetric study of nonstoichiometry and oxygen adsorption of SnO2, J. Solid Stat Chem., 1990, vol. 8, pp. 443–450.

    Google Scholar 

  26. Moh, G.H., Tin containing mineral systems. Part I: The Sn–Fe–S–O systems and mineral assemblages in ores, Chem. Erde, 1974, vol. 33, pp. 243–275.

    CAS  Google Scholar 

  27. McPherson, D.J. and Hanson, M., The system zirconium–tin, Trans. ASM, 1953, vol. 45, pp. 915–931.

    Google Scholar 

  28. Cahen, S., David, N., Fiorani, J.M., Maitre, A., and Vilasi, M., Thermodynamicl modeling of the O–Sn system, Thermochim. Acta, 2003, vol. 403, pp. 275–285.

    CAS  Google Scholar 

  29. Okatomo, H., O–Sn (oxygen–tin), J. Phase Equilibrium Diff., 2006, vol.27, p. 202.

    Google Scholar 

  30. Tropov, N.A., Barzakovskii, V.P., Bondar’, I.A., and Udalov, Yu.P., Diagrammy sostoyaniya silikatnykh sistem (The State Diagrams of Silicate Systems), Leningrad: Nauka, 1979, vol. 2, p. 372.

    Google Scholar 

  31. Berezkina, L.G., Ermakova, N.I., and Chizhikov, D.M., On the Tin Behavior in Heating, Zh. Neorg. Khim., 1964, vol. 9, no. 7, pp. 1760–1763.

    CAS  Google Scholar 

  32. Bolzan, A.A., Fong, C., Kennedy, B.J., and Howard, C.J., Structural studies of rutile-type metal dioxides, Acta Crystallogr. B, 1997, vol. 53, pp. 373–380.

    Google Scholar 

  33. Shannon, R.D. and Prewitt, C.T., Effective ionic radii in oxides and fluorides, Acta Crystallogr. B, 1969, vol. 25, pp. 925–946.

    CAS  Google Scholar 

  34. Maier, J. and Göpel, W., Investigations of the bulk defect chemistry of polycrystalline tin (IV) oxide, J. Solid State Chem., 1988, vol. 72, pp. 293–302.

    CAS  Google Scholar 

  35. Nagasawa, M. and Shionoya, S., Exiton structure in optical absorption of SnO2 crystals, Phys. Lett., 1966, vol. 22, pp. 409–410.

    CAS  Google Scholar 

  36. Nagasawa, M. and Shionoya, S., Zeeman effect and symmetry of the intrinsic SnO2 exiton, Phys. Rev. Lett., 1968, vol. 21, pp. 1070–1073.

    CAS  Google Scholar 

  37. Frohlich, D., Kenklies, R., and Helbig, R., Band-gap assignment in SnO2 by two photon spectroscopy, Phys. Rev. Lett., 1969, vol. 41, pp. 1750–1751.

    Google Scholar 

  38. Nagasawa, M. and Shionoya, S., Urbach’s rule in SnO2, Solid State Commun., 1969, vol. 7, pp. 1731–1733.

    CAS  Google Scholar 

  39. Summit, R., Marley, J.A., and Borely, N.F., The ultraviolet absorption edge of stannic oxide (SnO2), J. Phys. Chem. Solids, 1964, vol. 25, pp. 1465–1469.

    Google Scholar 

  40. Svanet, A. and Antoncik, E., Electronic structure of rutile SnO2, GeO2 and TeO2, J. Phys. Chem. Solids, 1987, vol. 48, pp. 171–180.

    Google Scholar 

  41. Cox, D.F. and Hoflund, G.B., An electronic and structural interpretation of ti oxide ELS spectra, Surf. Sci., 1985, vol. 151, pp. 202–220.

    CAS  Google Scholar 

  42. Batzill, M. and Diebold, U., The surface and materials science of tin oxide, Prog. Surf. Sci., 2005, vol. 79, pp. 47–154.

    CAS  Google Scholar 

  43. Munnix, S. and Schmeits, M., Electronic structure of tin dioxide surfaces, Phys. Rev. B, 1983, vol. 27, pp. 7624–7635.

    CAS  Google Scholar 

  44. Themlin, J.M., Sporken, R., Darville, J., Caudano, R., and Gilles, J.M., Resonant-photoemission study of SnO2: cationic origin of the defect band-gap states, Phys. Rev. B, 1990, vol. 42, pp. 11914–11925.

    CAS  Google Scholar 

  45. The Chemical Physics of the Surfaces, Morrison, S., Ed., New York: Plenum, 1977.

  46. Bechstedt, F. and Enderlein, R., Semiconductor Surfaces and Interfaces, Berlin: Akademie-Verlag, 1988.

    Google Scholar 

  47. Kurtin, S., McGill, T.C., and Mead, C.A., Fundamental transition in the electronic nature of solids, Phys. Rev. Lett., 1969, vol. 22, pp. 1433–1436.

    CAS  Google Scholar 

  48. Fonstadt, C.G. and Rediker, R.H., Electrical properties of high quality stannic oxide crystals, J. Appl. Phys., 1971, vol. 42, pp. 2911–2918.

    Google Scholar 

  49. Samson, S. and Fonstadt, C.G., Defect structure and electronic donor levels in stannic oxide, J. Appl. Phys., 1973, vol. 44, pp. 4618–4621.

    CAS  Google Scholar 

  50. Bârsan, N., Conduction models in gas-sensing SnO2 layers: grain-size effects and ambient atmosphere influence, Sens. Actuators B, 1994, vol. 17, pp. 241–246.

    Google Scholar 

  51. Williams, D.E., Conduction and gas response of semiconductor gas sensors, in In Solid State Gas Sensors, Mosely, T.P. and Tofield, B.C., Eds., Bristol and Philadelphia: Alam Higer, 1987.

    Google Scholar 

  52. Zemel, J.N., Theoretical description of gas-film interaction on SnOx, Thin Solid Films, 1988, vol. 163, pp. 189–202.

    CAS  Google Scholar 

  53. Demarne, V., Grisel, A., Sanjines, R., Rosenfeld, D., and Levy, F., Electrical transport properties of thin polycrystalline SnO2 film sensors, Sens. Actuators B, 1992, vol. 47, pp. 704–708.

    Google Scholar 

  54. Sanjines, R., Demarne, V., and Levy, F., Hall effect measurements in SnOx film sensors exposed to reducing and oxidizing gases, Thin Solid Films, 1990, vol. 193/194, pp. 935–942.

    Google Scholar 

  55. Göpel, W. and Schierbaum, K.D., SnO2 sensors: current status and future prospects, Sens. Actuators B, 1995, vols. 25–26, pp. 1–12.

    Google Scholar 

  56. Rantala, T.S. and Lantto, V., Some effects of mobile donors on electron trapping at semiconductors surfaces, Surf. Sci, 1996, vols. 352–354, pp. 765–770.

    Google Scholar 

  57. Rantala, T., Lantto, V., and Rantala, T., Computational approaches to the chemical sensitivity of semiconducting tin dioxides, Sens. Actuators, B, 1998, vol. 47, pp. 59–64.

    CAS  Google Scholar 

  58. Bârsan, N. and Weimar, U., Conduction model of metal oxide gas sensors, J. Electroceram., 2001, vol. 7, pp. 143–167.

    Google Scholar 

  59. Bârsan, N., Conduction models in gas-sensing SnO2 layers: grain-size effects and ambient atmosphere influence, Sens. Actuators, B, 1994, vol. 17, pp. 241–246.

    Google Scholar 

  60. Graf, M., Gurlo, A., Bârsan, N., Weimar, U., and Hierlemann, A., Microfabricated gas sensor systems with sensitive nanocrystalline metal–oxide films, J. Nanoparticle Res., 2006, vol. 6., pp. 823–829.

    Google Scholar 

  61. Baraton, M.-I. and Merhari, L., Nanoparticle-based chemical gas sensors for outdoor air quality monitoring microstations, Mater. Sci. Eng. B., 2004, vol. 112, pp. 206–213.

    Google Scholar 

  62. Labeau, M., Gautheron, B., Delabouglise, G., Pena, J., Ragel, V., Varela, A., Roman, J., Martinez, J., Gonzalez-Calbet, J.M., and Vallet-Regi, M., Synthesis, structure and gas sensitivity properties of pure and doped SnO2, Sens. Actuators B, 1993, vols. 15–16, pp. 379–383.

    Google Scholar 

  63. McAleer, J.F., Moseley, P.T., Norris, J.O.W., and Williams, D.E., Tin dioxide gas sensors. Part 1. Aspects of the surface chemistry revealed by electrical conductance variations, J. Chem. Soc. Faraday Trans. 1, 1987, vol. 83, pp. 1323–1346.

    CAS  Google Scholar 

  64. Chizhov, A.S., Rumyantseva, M.N, and Gaskov, A.M., Frequency-dependent electrical conductivity of nanocrystalline SnO2, Inorg. Mat., 2013, vol. 49, no. 10, pp. 1000–1004.

    CAS  Google Scholar 

  65. Vasiliev, R.B., Dorofeev, S.G., Rumyantseva, M.N, Ryabova, L.I., and Gaskov, A.M., Impedance spectroscopy of the ultradisperse SnO2 ceramic with variable grain size, Semiconductors, 2006, vol. 40, no. 1, pp. 104–107.

    Google Scholar 

  66. Tasker, P.W., The stability of ionic crystal surfaces, J. Phys. C, 1979, vol. 12, pp. 4977–4984.

    CAS  Google Scholar 

  67. Manassidis, I., Goniakowski, J., Kantrovich, L.N., and Gillan, M.J., The structure of the stoichiometric and reduced SnO2 surface, Surf. Sci., 1995, vol. 339, pp. 258–271.

    CAS  Google Scholar 

  68. Thiel, B. and Helbig. R., Growth of SnO2 single crystal by vapour phase reaction method, J. Cryst. Growth, 1976, vol. 32, pp. 259–264.

    CAS  Google Scholar 

  69. Themlin, J.M., Sporken, R., Darville, J., Caudano, R., and Gilles, J.M., Resonant-photoemission study of SnO2: cationic origin of the defect band-gap states, Phys. Rev. B, 1990, vol. 42, pp. 11914–11925.

    CAS  Google Scholar 

  70. Egdell, R.J., Ericksen, S., and Flavell, W.R., Oxygen deficient SnO2 (110) and TiO2 (110): a comparative study by photoemission, Solid State Commun., 1986, vol. 60, pp. 835–838.

    CAS  Google Scholar 

  71. Munnix, S. and Schmeits, M., Electronic structure of tin dioxide surfaces, Phys. Rev. B, 1983, vol. 27, pp. 7624–7635.

    CAS  Google Scholar 

  72. Zuo, J., Xu, C., Liu, X., Wang, C., Hu, Y., and Chian, Y., Study of the Raman spectrum of nanometer SnO2, J. Appl. Phys., 1994, vol. 75, pp. 1835–1836.

    CAS  Google Scholar 

  73. Abello, L., Bochu, B., Gaskov, A., Koudryavtseva, S., Lucazeau, G, and Roumyantseva, M., Structural characterization of nanocrytalline SnO2 by X-ray and Raman spectroscopy, J. Solid State Chem., 1988, vol. 135, pp. 78–85.

    Google Scholar 

  74. Diéguez, A., Romano-Rodrìguez, A., Vilà, A., and Morante, J.R., The complete Raman spectrum of nanometric SnO2 particles, J. Appl. Phys., 2001, vol. 90, pp. 1550–1557.

    Google Scholar 

  75. Batzill, M., Katsiev, K., and Diebold, U. Surface morphologies of SnO2(110), Surf. Sci., 2003, vol. 529, pp. 295–311.

    CAS  Google Scholar 

  76. Godin, T.J. and La Famina, J.P., Surface atomic and electronic structure of cassiterite SnO2(110), Phys. Rev. B, 1993, vol. 47, pp. 6518–6523.

    CAS  Google Scholar 

  77. Henrich, V.E. and Cox, P.A., The Surface Science of Metal Oxides, Cambridge: Cambridge University Press, 1996, p. 458.

    Google Scholar 

  78. Cox, D.F., Fryberger, T.B., and Semancik, S., Surface reconstruction of surface deficient SnO2 (110), Surf. Sci, 1989, vol. 224, pp. 121–142.

    CAS  Google Scholar 

  79. Cox, D.F. and Fryberger, T.B., Preferential isotopic labeling of lattice oxygen positions on the SnO2 (110) surface, Surf. Sci, 1990, vol. 227, pp. L105–L108.

    CAS  Google Scholar 

  80. Cox, D.F., Fryberger, T.B., and Semancik, S., Oxygen vacancies and defect electronic states on the SnO2 (110)-1 × 1 surface, Phys. Rev. B, 1988, vol. 38, pp. 2072–2083.

    CAS  Google Scholar 

  81. Semancik, S. and Cox, D.F., Fundamental characterization of clean and gas-doped tin oxide, Sens. Actuators, 1987, vol. 12, pp. 101–106.

    CAS  Google Scholar 

  82. Erickson, J.W. and Semancik, S., Surface conductivity changes in SnO2(110): effects of oxygen, Surf. Sci., 1987, vol. 187, pp. L658–L668.

    CAS  Google Scholar 

  83. Shen, G.L., Casanova, R., Thornton, G., and Colera, I., Correlation between the surface conductivity and structure of SnO2(110), J. Phys.: Cond. Matter., 1991, vol. 3, pp. S291–S296.

    CAS  Google Scholar 

  84. Oviedo, J. and Gillan, M.J., Reconstruction of strongly reduced SnO2(110) studied by first principles methods, Surf. Sci., 2002, vol. 513, pp. 26–36.

    CAS  Google Scholar 

  85. Sinner-Hettenbach, M., Gothelid, M., Weissenrieder, J., von Schenk, H., Weiss, T., Bârsan, N., and Weimar, U., Oxygen-deficient SnO2(110): a STM, LEED and XPS study, Surf. Sci., 2001, vol. 477, pp. 50–58.

    CAS  Google Scholar 

  86. Sanjines, R., Demarne, V., and Levy, F., Hall effect measurements in SnOx film sensors exposed to reducing and oxidizing gases, Thin Solid Films, 1990, vol. 193/194, pp. 935–942.

    Google Scholar 

  87. Hübner, M., Pavelko, R.G., Bârsan, N., and Weimar, U., Influence of oxygen background on oxygen sensing with SnO2 nanomaterials, Sens. Actuators, B, 2001, vol. 154, pp. 264–269.

    Google Scholar 

  88. Clifford, P.K. and Tuma, D.T., Characteristics of semiconductor gas sensors. I. Steady state gas response, Sens. Actuators, B, 1982/1983, vol. 3, pp. 233–254.

    Google Scholar 

  89. Heiland, G. Homogeneous semiconducting gas sensors, Sens. Actuators, B, 1982, vol. 2, pp. 343–361.

    CAS  Google Scholar 

  90. Schierbaum, K.D., Wiemhofer, H.D., and Göpel, W., Defect structure and sensing mechanism of SnO2 gas sensors: comparative electrical and spectroscopic studies, Solid State Ionics, 1988, vols. 28–30, pp. 1631–1636.

    Google Scholar 

  91. Herrmann, J.-M., Disdier, J., Fernandez, A., Jimenez, V.M., and Sánchez-López, J.C., Oxygen gas sensing behavior of nanocrystalline tin oxide prepared by the gas phase condensation method, Nanostruct. Mater., 1997, vol. 8, pp. 675–686.

    CAS  Google Scholar 

  92. Akiyama, M., Tamaki, J., Miura, N., and Yamazoe, N., Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2, Chem. Lett., 1991, vol. 20, pp. 1611–1614.

    Google Scholar 

  93. Guérin, J., Aguir, K., and Bendahan, M., Modeling of the conduction in a WO3 thin film as ozone sensor, Sens. Actuators, B, 2006, vol. 119, pp. 327–334.

    Google Scholar 

  94. Vuong, D.D., Sakai, G., Shimanoe, K., and Yamazoe, N., Preparation of grain size-controlled tin oxide sols by hydrogen treatment for thin film sensor application, Sens. Actuators B, 2004, vol. 103, pp. 386–391.

    CAS  Google Scholar 

  95. Yamazoe, N. and Shimanoe, K., Theory of power laws for semiconductor gas sensor, Sens. Actuators, B, 2008, vol. 128, pp. 566–573.

    CAS  Google Scholar 

  96. Sahm, T., Gurlo, A., Bârsan, N., and Weimar, U., Basics of oxygen and SnO2 interaction; work function change and conductivity measurement, Sens. Actuators, B, 2006, vol. 118, pp. 78–83.

    CAS  Google Scholar 

  97. Gurlo, A., Interplay between O2 and SnO2: Oxygen ionosorption and spectroscopic evidence for adsorbed oxygen, Chem. Phys. Chem., 2006, vol. 7, pp. 2041–2052.

    CAS  Google Scholar 

  98. Korotcenkov, G., Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, Sens. Actuators, B, 2005, vol. 107, pp. 209–232.

    CAS  Google Scholar 

  99. Jarzebski, Z.M. and Marton, J.P., Physical properties of SnO2 materials. II. Electrical properties, J. Electrochem. Soc., 1976, vol. 123, pp. 299C–310C.

    Google Scholar 

  100. Mizokawa, Y. and Nakamura, S., ESR and electric conductance studies of the fine-powdered SnO2, Jpn. J. Appl. Phys., 1975, vol. 14, pp. 779–788.

    CAS  Google Scholar 

  101. Tournier, G. and Pijolat, C., Influence of oxygen concentration in the carrier gas on the response of tin dioxide sensor under hydrogen and methane, Sens. Actuators, B, 1999, vol. 61, pp. 43–50.

    CAS  Google Scholar 

  102. Arnold, M.S., Avouris, P., Pan, Z.W., and Wang, Z.L., Field-effect transistors based on single semiconducting oxide nanobelts, J. Phys. Chem. B, 2003, vol. 107, pp. 659–663.

    CAS  Google Scholar 

  103. Kohl, D., Surface processes in the detection o reducing gases with SnO2-based devices, Sens. Actuators, B, 1989, vol. 18, pp. 71–113.

    CAS  Google Scholar 

  104. Rumyantseva, M.N., Makeev, E.A, Badalyan, S.M., Zhukova, A.A., and Gaskov, A.M., Nanocrystalline SnO2 and In2O3 as materials for gas sensors: the relationship between microstructure and oxygen chemisorption, Thin Solid Films, 2009, vol. 518, pp. 1283–1288.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Samoylov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marikutsa, A.V., Rumyantseva, M.N., Gaskov, A.M. et al. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part I. Physical and chemical properties and sensor signal formation. Inorg Mater 51, 1329–1347 (2015). https://doi.org/10.1134/S002016851513004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851513004X

Keywords

  • tin dioxide
  • nanocrystalline materials
  • semiconductor oxides
  • gas sensors