Skip to main content
Log in

Fabrication and characterization of composites based on CeO2 nanoparticles and graphene

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper describes a sequential, two-step process for the synthesis of a composite based on graphene and CeO2 nanoparticles using supercritical fluid. The process includes the reduction of a prepre-pared graphene oxide/CeO2 nanocomposite with supercritical propanol-2. The nanocomposites thus obtained have been characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johns, J.E., Alaboson, J.M., Patwardhan, S.P., Ryder, C.R., Schatz, G.C., and Hersam, M.C., Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen, J. Am. Chem. Soc., 2013, vol. 135, pp. 18 121–18 125.

    Article  CAS  Google Scholar 

  2. Gotoh, K., Kinumoto, T., Fujii, E., Yamamoto, A., Hashimoto, H., Ohkubo, T., Itadani, A., Kuroda, Y., and Ishida, H., Exfoliated graphene sheets decorated with metal/metal oxide nanoparticles: simple preparation from cation exchanged graphite oxide, Carbon, 2011, vol. 49, pp. 1118–1125.

    Article  CAS  Google Scholar 

  3. Huajie, Y., Zhao, S., Wan, J., Tang, H., Chang, L., He, L., Zhao, H., Gao, Y., and Tang, Z., Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water, Adv. Mater., 2013, vol. 25, no. 43, pp. 6270–6276.

    Article  Google Scholar 

  4. Lee, C., Wei, X.D., Kysar, J.W., and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 2008, vol. 321, pp. 385–388.

    Article  CAS  Google Scholar 

  5. Geim, A.K., Graphene: status and prospects, Science, 2009, vol. 324, pp. 1530–1534.

    Article  CAS  Google Scholar 

  6. Geim, A.K. and Novoselov, K.S., The rise of graphene, Nat. Mater., 2007, vol. 6, pp. 183–191.

    Article  CAS  Google Scholar 

  7. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S., Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 2010, vol. 22, no. 35, pp. 3906–3924.

    Article  CAS  Google Scholar 

  8. Akhavan, O., Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol, Carbon, 2011, vol. 49, pp. 11–18.

    Article  CAS  Google Scholar 

  9. Zhang, X.Y., Li, H.P., Cui, X.L., and Lin, Y., Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem., 2010, vol. 20, no. 14, pp. 2801–2806.

    Article  CAS  Google Scholar 

  10. Wang, B., Su, D., Park, J., Ahn, H., and Wang, G., Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries, Nanoscale Res. Lett., 2012, vol. 7, pp. 215–218.

    Article  Google Scholar 

  11. Jasinski, P., Suzuki, T., and Anderson, H.U., Nanocrystalline undoped ceria oxygen sensor, Sens. Actuators, B, 2003, vol. 95, pp. 73–77.

    Article  CAS  Google Scholar 

  12. Corma, A., Atienzar, P., García, H., and Chane-Ching, J.-Y., Hierarchically mesostructured doped CeO2 with potential for solar-cell use, Nat. Mater., 2004, vol. 6, pp. 394–397.

    Article  Google Scholar 

  13. Liu, X.W., Zhou, K.B., Wang, L., Wang, B.Y., and Li, Y.D., Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, J. Am. Chem. Soc., 2009, vol. 131, no. 9, pp. 3140–3141.

    Article  CAS  Google Scholar 

  14. Shekunova, T.O., Gil’, D.O., Ivanova, O.S., Ivanov, V.K., and Tret’yakov, Yu.D., Synthesis, bioactivity, and photocatalytic activity of citrate ion-stabilized ceria sols, Nanosist.: Fiz., Khim., Mat., 2013, vol. 4, no. 1, pp. 83–89.

    Google Scholar 

  15. Zhou, X., Qiao, J., Yang, L., and Zhang, J., A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions, Adv. Energy Mater., 2014, vol. 4, no. 3, pp. 1–25.

    Article  Google Scholar 

  16. An, K., Alayoglu, S., Musselwhite, N., Na, K., and Somorjai, G.A., Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane, J. Am. Chem. Soc., 2014, vol. 136, no. 19, pp. 6830–6833.

    Article  CAS  Google Scholar 

  17. Hummers, W.S., Jr. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, pp. 1339–1339.

    Article  CAS  Google Scholar 

  18. Shalyapina, A.Ya., Solov’eva, A.Yu., Zaporozhets, M.A., Khokhlov, E.M., Plotnichenko, V.G., Savilov, S.V., Egorov, A.V., Nikolaichik, V.I., Buslaeva, E.Yu., Rustamova, E.G., Avilov, A.S., and Gubin, S.P., Zinc oxide nanoparticles immobilized on graphene flake, Russ. J. Inorg. Chem., 2013, vol. 58, no. 3, pp. 354–360.

    Article  CAS  Google Scholar 

  19. Tkachev, S.V., Buslaeva, E.Yu., Naumkin, A.V., Kotova, S.L., Laure, I.V., and Gubin, S.P., Reduced graphene oxide, Inorg. Mater., 2012, vol. 48, no. 8, pp. 796–802.

    Article  CAS  Google Scholar 

  20. Gubin, S.P. and Buslaeva, E.Yu., Supercritical isopropanol as a reductant of inorganic oxides, Sverkhkrit. Flyuidy: Teor. Prakt., 2009, vol. 4, no. 4, pp. 73–96.

    Google Scholar 

  21. Yan, M., Wei, W., and Zuoren, N., Influence of pH on morphology and formation mechanism of CeO2 nanocrystalline, J. Rare Earths, 2007, vol. 25, pp. 53–57.

    Article  Google Scholar 

  22. Pouretedal, H.R. and Kadkhodaie, A., Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: kinetics and mechanism, Chin. J. Catal., 2010, vol. 31, no. 11, pp. 1328–1334.

    Article  CAS  Google Scholar 

  23. Naumkin, V., Kraut-Vass, A., Gaarenstroom, S.W., and Powell, C.J., NIST Photoelectron Spectroscopy Database, Version 4.1, Gaithersburg: National Inst. of Standards and Technology, 2012. http://srdata.nist.gov/xps/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Soloveva.

Additional information

Original Russian Text © A.Yu. Soloveva, Yu.V. Ioni, E.Yu. Buslaeva, M.A. Zaporozhets, S.V. Savilov, A.V. Naumkin, S.P. Gubin, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 8, pp. 923–928.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloveva, A.Y., Ioni, Y.V., Buslaeva, E.Y. et al. Fabrication and characterization of composites based on CeO2 nanoparticles and graphene. Inorg Mater 51, 848–853 (2015). https://doi.org/10.1134/S0020168515080178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515080178

Keywords

Navigation