Skip to main content
Log in

Structure and mechanical properties of Ag–Cu films prepared by vacuum codeposition of Au and Cu

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied in detail the structure formation process in Ag–Cu films in the course of vacuum deposition of the metals, followed by thermal annealing, and compared the hardness values of nanocrystalline Ag, Cu, and Ag–Cu films. Under equivalent deposition conditions, the hardness of the Ag–Cu films produced by codeposition of the metals exceeds that of the Ag and Cu films. The high hardness of the mixedphase Ag–Cu films is due to their amorphous–nanocrystalline structure. We have determined the limiting grain size above which plastic deformation follows a dislocation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, J.L., Calculations of stable and metastable equilibrium diagrams of the Ag–Cu and Cd–Zn systems, Metall. Trans. A, 1984, vol. 15, pp. 261–268.

    Article  Google Scholar 

  2. Ievlev, V.M., Shvedov, E.V., Ampilogov, V.P., and Merkulov, G.V., Kinetics of diffusional phase separation in growing films of two-component metallic systems with a limited mutual solid solubility of components, Phys. Met. Metallogr., 2000, vol. 90, no. 2, pp. 159–163.

    Google Scholar 

  3. Dirks, A.G., Broek, J.J., and Wierenga, P.E., Mechanical properties of thin alloy films: ultramicrohardness and internal stress, J. Appl. Phys., 1984, vol. 55, pp. 4248–4256.

    Article  CAS  Google Scholar 

  4. Chen, H. and Zuo, J-M., Structure and phase separation of Ag–Cu alloy thin films, Acta Mater., 2007, vol. 55, pp. 1617–1628.

    Article  CAS  Google Scholar 

  5. Gohil, S., Banerjee, R., Bose, S., and Ayyub, P., Influence of synthesis conditions on the nanostructure of immiscible copper–silver alloy thin films, Scr. Mater., 2008, vol. 58, pp. 842–845.

    Article  CAS  Google Scholar 

  6. Bol’shov, L.A. and Veshchunov, M.S., Spinodal decomposition and glass transition in eutectic alloy, Zh. Eksp. Teor. Fiz., 1986, vol. 64, no. 3, pp. 635–639.

    Google Scholar 

  7. Misják, A.F., Barna, P.B., and Radnóczi, G., Formation of ordered solid solution during phase separation in Ag–Cu alloy films, Mater. Sci., 2008, vol. 2, pp. 389–390.

    Google Scholar 

  8. Fan, Z., Tsakiropoulos, P., and Miodownik, A.P., A generalized law of mixture, J. Mater. Sci., 1994, vol. 29, pp. 141–150.

    Article  CAS  Google Scholar 

  9. Reshetnyak, E.N. and Strel’nitskii, V.E., Synthesis of hardening nanostructured coatings, Vopr. At. Nauki Tekh., 2008, no. 2, pp. 119–130.

    Google Scholar 

  10. Wojdir, M., Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr., 2010, vol. 43, pp. 1126–1128.

    Article  Google Scholar 

  11. Pecharsky, V.K. and Zavalij, P.Y., Fundamentals of Powder Diffraction and Structural Characterization of Materials, New York: Springer, 2009.

    Google Scholar 

  12. Powder Diffraction File, Alphabetical Index Inorganic Compounds, Pennsylvania: JCPDS, 1997.

    Google Scholar 

  13. Skripov, V.P. and Skripov, L.V., Spinodal decomposition, Usp. Fiz. Nauk, 1979, vol. 128, no. 2, pp. 193–230.

    Article  CAS  Google Scholar 

  14. Labisz, K., Rdzawski, Z., and Pawlyta, M., Microstructure evaluation of long-term aged binary Ag–Cu alloy, Arch. Mater. Sci. Eng., 2011, vol. 49, no. 1, pp. 15–24.

    Google Scholar 

  15. Soboyejo, W.O., Mechanical properties of engineering materials, New York: Marcel Dekker, 2002.

    Book  Google Scholar 

  16. Volinsky, A.A., Vella, J., Adhihetty, I.S., Sarihan, V., Mercado, L., Yeung, B.H., and Gerberich, W.W., Microstructure and mechanical properties of electroplated Cu thin films, Mater. Res. Soc., 2001, vol. 649, pp. 5.3.1–5.3.6.

    Google Scholar 

  17. Cao, Y., Allameh, S., Nankivil, D., Sethiaraj, S., Otiti, T., and Soboyjo, W., Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: effects of grain size and film thickness, Mater. Sci. Eng., A, 2006, vol. 427, pp. 232–240.

    Article  Google Scholar 

  18. Andrievskii, R.A. and Glezer, A.M., Strength of nanostructures, Usp. Fiz. Nauk, 2009, vol. 179, pp. 337–358.

    Article  Google Scholar 

  19. Firstov, S.A., Gorban’, V.F., and Pechkovskii, E.P., New methodological possibilities of evaluating the mechanical properties of advanced materials by automatic indentation, Nauka Innov., 2010, vol. 6, no. 5, pp. 7–18.

    Google Scholar 

  20. Ren, F., Zhao, S., Li, W., Tian, B., Yin, L., and Volinsky, A.A., Theoretical explanation of Ag/Cu and Cu/Ni nanoscale multilayers softening, Mater. Lett., 2011, vol. 65, no. 1, pp. 119–121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Kushchev.

Additional information

Original Russian Text © S.B. Kushchev, M.A. Bosykh, S.V. Kannykin, A.V. Kostyuchenko, S.A. Soldatenko, M.S. Antonova, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 7, pp. 739–745.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushchev, S.B., Bosykh, M.A., Kannykin, S.V. et al. Structure and mechanical properties of Ag–Cu films prepared by vacuum codeposition of Au and Cu. Inorg Mater 51, 673–678 (2015). https://doi.org/10.1134/S0020168515070092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515070092

Keywords

Navigation