Inorganic Materials

, Volume 51, Issue 5, pp 419–424 | Cite as

Nonlinear optical conversion in synthetic opal

  • V. S. GorelikEmail author
  • K. I. Zaytsev
  • V. N. Moiseenko
  • S. O. Yurchenko
  • I. N. Aliev


This paper presents an experimental study of third optical harmonic generation processes in synthetic opal. Excitation was provided by ultrashort (∼10−13 s) laser pulses (λ = 1026 and 513 nm) with a high repetition rate (105 Hz), high peak power (up to 1 GW), and low pulse energy (10−5 J). The third optical harmonic intensity was shown to depend significantly on the diameter of the silica spheres, which determines the spectral position of the band gaps in the opal photonic crystal. The highest efficiency of the nonlinear optical conversion of excitation light to the third optical harmonic was observed when the excitation or optical harmonic wavelength was close to the spectral position of the band gap of the photonic crystal. This behavior can be accounted for by the presence of surface photon (Tamm) states of the optical field in opal photonic crystals in the spectral region corresponding to the band gap of the photonic crystal. The presence of photon Tamm states leads to the formation of high spectral intensity regions localized near the surface of the photonic crystal. This causes a considerable increase in nonlinear optical conversion efficiency, in particular, in the case of the third optical harmonic generation in the centrosymmetric structure of opal lattices.


Photonic Crystal Pump Power Spectral Position Matter Mater Sphere Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bykov, V.P., Spontaneous emission in a periodic structure, Zh. Eksp. Teor. Fiz., 1972, vol. 62, no. 2, pp. 505–513.Google Scholar
  2. 2.
    Gorelik, V.S., Optical properties of opal photonic crystals, Kvantovaya Elektron. (Moscow), 2007, vol. 37, no. 5, pp. 409–432.CrossRefGoogle Scholar
  3. 3.
    Ho, K.M., Chan, C.T., and Soukoulis, C.M., Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett., 1990, vol. 65, pp. 3152–3155.CrossRefGoogle Scholar
  4. 4.
    Yablonovitch, E. and Gmitter, T.J., Photonic band structure: the face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett., 1991, vol. 67, pp. 2295–2298.CrossRefGoogle Scholar
  5. 5.
    Hornreich, R.M. and Shtrikman, S., Photonic band gaps in body-centered-cubic structures, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 49, pp. 10 914–10 917.CrossRefGoogle Scholar
  6. 6.
    Sajeev, J., Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 1987, vol. 58, pp. 2486–2489.CrossRefGoogle Scholar
  7. 7.
    Fan, S., Johnson, S.G., Joannopoulos, J.D., Manolatou, C., and Haus, H.A., Waveguide branches in photonic crystals, J. Opt. Soc. Am. B.: Opt. Phys., 2001, vol. 18, pp. 162–165.CrossRefGoogle Scholar
  8. 8.
    Chow, E., Lin, S.Y., Wendt, J.R., Johnson, S.G., and Joannopoulos, J.D., Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths, Opt. Lett., 2001, vol. 26, pp. 286–288.CrossRefGoogle Scholar
  9. 9.
    Knight, J.C., Birks, T.A., Russell, P.St.J., and Atkin, D.M., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., 1996, vol. 21, no. 19, pp. 1547–1549.CrossRefGoogle Scholar
  10. 10.
    Knight, J.C., Broeng, J., Birks, T.A., and Russell, P.St.J., Photonic band gap guidance in optical fibers, Science, 1998, vol. 282, no. 5393, pp. 1476–1478.CrossRefGoogle Scholar
  11. 11.
    Benabid, F., Couny, F., Knight, J.C., Birks, T.A., and Russell, P.St.J., Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers, Nature, 2005, vol. 434, no. 7032, pp. 488–491.CrossRefGoogle Scholar
  12. 12.
    Boyko, V., Dovbeshko, G., Fesenko, O., Gorelik, V., Moiseyenko, V., Romanyuk, V., Shvets, T., and Vodolazkyy, P., New optical properties of synthetic opals infiltrated by DNA, Mol. Cryst. Liq. Cryst., 2011, vol. 535, pp. 30–41.CrossRefGoogle Scholar
  13. 13.
    Artamonov, A.N., Burkov, V.I., Vitukhnovskii, A.G., Gorelik, V.S., Ivicheva, S.N., Sverbil’, P.P., and Skorikov, V.M., Photoluminescence of nanocomposites based on opal matrices of silica sols with rare-earth elements, Kratk. Soobshch. Fiz., 2005, no. 10, pp. 20–29.Google Scholar
  14. 14.
    Avakyants, L.P., Gorelik, V.S., Zlobina, L.I., Mel’nik, N.N., Sverbil’, P.P., Fadyushin, A.B., and Chervyakov, A.V., Raman scattering study of NaNO2-infiltrated opal photonic crystals, Neorg. Mater., 2006, vol. 42, no. 6, pp. 635–640.CrossRefGoogle Scholar
  15. 15.
    Gorelik, V.S. and Filatov, V.V., Dispersion characteristics of waterand gold-infiltrated opal photonic crystals, Inorg. Mater., 2012, vol. 48, no. 4, pp. 361–367.CrossRefGoogle Scholar
  16. 16.
    Soljacic, M. and Joannopoulos, J.D., Enhancement of nonlinear effects using photonic crystals, Nat. Mater., 2004, vol. 3, pp. 211–219.CrossRefGoogle Scholar
  17. 17.
    Berger, V., Nonlinear photonic crystals, Phys. Rev. Lett., 1998, vol. 81, pp. 4136–4139.CrossRefGoogle Scholar
  18. 18.
    Balakin, A.V., Bushuev, V.A., Koroteev, N.I., Mantsyzov, B.I., Ozheredov, I.A., Shkurinov, A.P., Boucher, D., and Masselin, P., Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light, Opt. Lett., 1999, vol. 24, no. 12, pp. 793–795.CrossRefGoogle Scholar
  19. 19.
    Fedyanina, A.A., Aktsipetrov, O.A., Kurdyukov, D.A., Golubev, V.G., and Inoue, M., Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals, Appl. Phys. Lett., 2005, vol. 87, paper 151 111.Google Scholar
  20. 20.
    Balakin, A.V., Bushuev, V.A., Mantsyzov, B.I., Ozheredov, I.A., Petrov, E.V., Shkurinov, A.P., Masselin, P., and Mouret, G., Enhancement of sum frequency generation near the photonic band gap edge under the quasiphase matching conditions, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2001, vol. 63, no. 4, paper 466 091.Google Scholar
  21. 21.
    Andreev, A.V., Balakin, A.V., Kozlov, A.B., Ozheredov, I.A., Prudnikov, I.R., Shkurinov, A.P., Masselin, P., and Mouret, G., Four-wave mixing in one-dimensional photonic crystals: inhomogeneouswave excitation, J. Opt. Soc. Am. B: Opt. Phys., 2002, vol. 19, no. 8, pp. 1865–1872.CrossRefGoogle Scholar
  22. 22.
    Andreev, A.V., Balakin, A.V., Kozlov, A.B., Ozheredov, I.A., Prudnikov, I.R., Shkurinov, A.P., Masselin, P., and Mouret, G., Nonlinear process in photonic crystals under the noncollinear interaction, J. Opt. Soc. Am. B: Opt. Phys., 2002, vol. 19, no. 9, pp. 2083–2093.CrossRefGoogle Scholar
  23. 23.
    Yablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 1987, vol. 58, pp. 2059–2062.CrossRefGoogle Scholar
  24. 24.
    Bhat, N.A.R. and Sipe, J.E., Optical pulse propagation in nonlinear photonic crystals, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2001, vol. 64, paper 056 604.Google Scholar
  25. 25.
    Rivoire, K., Buckley, S., Song, Y., Lee, M.L., and Vučković, J., Photoluminescence from In0.5Ga0.5As/GaP quantum dots coupled to photonic crystal cavities, Phys. Rev. B: Condens. Matter Mater. Phys., 2012, vol. 85, paper 045 319.CrossRefGoogle Scholar
  26. 26.
    Vinogradov, A.P., Dorofeenko, A.V., Merzlikin, A.M., and Lisyanskii, A.A., Surface states in photonic crystals, Usp. Fiz. Nauk, 2010, vol. 180, no. 3, pp. 249–263.CrossRefGoogle Scholar
  27. 27.
    Kłos, J., Conditions of Tamm and Shockley state existence in chains of resonant cavities in a photonic crystal, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, paper 165 125.CrossRefGoogle Scholar
  28. 28.
    Malkova, N. and Ning, C.Z., Shockley and Tamm surface states in photonic crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 73, paper 113 113.CrossRefGoogle Scholar
  29. 29.
    Malkova, N. and Ning, C.Z., Interplay between Tamm-like and Shockley-like surface states in photonic crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, paper 045 305.CrossRefGoogle Scholar
  30. 30.
    Zaytsev, K.I., Gorelik, V.S., Khorokhorov, A.M., and Yurchenko, S.O., FDTD simulation of the electromagnetic field surface states in 2D photonic crystals, J. Phys.: Conf. Ser., 2014, vol. 486, paper 012 003.Google Scholar
  31. 31.
    Zaytsev, K.I., Katyba, G.M., Yakovlev, E.V., Gorelik, V.S., and Yurchenko, S.O., Band-gap nonlinear optical generation: the structure of internal optical field and the structural light focusing, J. Appl. Phys., 2014, vol. 115, paper 213 505.Google Scholar
  32. 32.
    Katyba, G.M. and Gorelik, V.S., Parametric emission generation in cubic noncentrosymmetrical crystals, J. Phys.: Conf. Ser., 2014, vol. 486, nos. 1–4, paper 012 020.Google Scholar
  33. 33.
    Gorelik, B.C. and Katyba, G.M., Terahertz generation in cubic noncentrosymmetric crystals, Kratk Soobshch. Fiz., 2014, no. 5, pp. 17–28.Google Scholar
  34. 34.
    Gorelik, B.C. and Filatov, V.V., Reflection spectra of synthetic opal at liquid-nitrogen temperature, Inorg. Mater., 2014, vol. 50, no. 10, pp. 1007–1011.CrossRefGoogle Scholar
  35. 35.
    Besedina, K.N., Investigation of opal lattice formation processes, Nanoinzheneriya, 2012, no. 3, pp. 7–11.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. S. Gorelik
    • 1
    Email author
  • K. I. Zaytsev
    • 2
  • V. N. Moiseenko
    • 3
  • S. O. Yurchenko
    • 2
  • I. N. Aliev
    • 2
  1. 1.Lebedev Institute of PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Bauman State Technical UniversityMoscowRussia
  3. 3.Oles Honchar Dnipropetrovsk National UniversityDnipropetrovskUkraine

Personalised recommendations