Skip to main content
Log in

Efficient synthesis of aluminum- and zinc-containing metal-organic frameworks

  • Published:
Inorganic Materials Aims and scope

Abstract

A convenient method has been proposed for the synthesis of aluminum- and zinc-containing terephthalic acid-based metal-organic frameworks. The method offers high productivity and high product yield. Materials produced by this method have been characterized by physicochemical techniques, and their sorption capacity has been assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murray, L.J., Dinca, M., and Long, J.R., Hydrogen storage in metal-organic frameworks, Chem. Soc. Rev., 2009, vol. 38, no. 5, pp. 1294–1314.

    Article  CAS  Google Scholar 

  2. Li, J.-R., Kuppler, R.J., and Zhou, H.-C., Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 2009, vol. 38, no. 5, pp. 1477–1504.

    Article  CAS  Google Scholar 

  3. Duren, T., Bae, Y.-S., and Snurr, R.Q., Using molecular simulation to characterise metal-organic frameworks for adsorption applications, Chem. Soc. Rev., 2009, vol. 38, no. 5, pp. 1237–1247.

    Article  Google Scholar 

  4. Luo, J., Wang, J., Li, G., et al., Assembly of a unique octa-nuclear copper cluster-based metal-organic framework with highly selective CO2 adsorption over N2 and CH4, Chem. Commun., 2013, vol. 49, no. 97, pp. 11 433–11 435.

    Article  CAS  Google Scholar 

  5. Yang, S., Lin, X., Lewis, W., et al., A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide, Nat. Mater., 2012, vol. 11, pp. 710–716.

    Article  CAS  Google Scholar 

  6. Maes, M., Alaerts, L., Vermoortele, F., et al., Separation of C5-hydrocarbons on microporous materials: complementary performance of MOFs and zeolites, J. Am. Chem. Soc., 2010, vol. 132, no. 7, pp. 2284–2292.

    Article  CAS  Google Scholar 

  7. Lee, J., Farha, O.K., Roberts, J., et al., Metal-organic framework materials as catalysts, Chem. Soc. Rev., 2009, vol. 38, no. 5, pp. 1450–1459.

    Article  CAS  Google Scholar 

  8. Ma, L., Abney, C., and Lin, W., Enantioselective catalysis with homochiral metal-organic frameworks, Chem. Soc. Rev., 2009, vol. 38, no. 5, pp. 1248–1256.

    Article  CAS  Google Scholar 

  9. Ravon, U., Chaplais, G., Chizallet, C., et al., Investigation of acid centers in MIL-53(Al,Ga) for Brönstedtype catalysis: in situ FTIR and ab initio molecular modeling, Chem. Catal. Chem., 2010, vol. 2, no. 10, pp. 1235–1238.

    CAS  Google Scholar 

  10. Ferey, G., Some suggested perspectives for multifunctional hybrid porous solids, Dalton Trans., 2009, no. 23, pp. 4400–4415.

    Google Scholar 

  11. Horcajada, P., Serre, C., Maurin, G., et al., Flexible porous metal-organic frameworks for a controlled drug delivery, J. Am. Chem. Soc., 2008, vol. 130, no. 21, pp. 6774–6780.

    Article  CAS  Google Scholar 

  12. Horcajada, P., Chalati, T., Serre, C., et al., Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater., 2010, vol. 9, pp. 172–178.

    Article  CAS  Google Scholar 

  13. Cohen, S.M., New approaches for medicinal applications of bioinorganic chemistry, Curr. Opin. Chem. Biol., 2007, vol. 11, no. 2, pp. 115–120.

    Article  CAS  Google Scholar 

  14. Cychosz, K.A. and Matzger, A., Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water, Langmuir, 2010, vol. 26, no. 22, pp. 17 198–17 202.

    Article  CAS  Google Scholar 

  15. Allendorf, M.D., Bauer, C.A., Bhakta, R., and Houk, R.J.T., Luminescent metal-organic frameworks, Chem. Soc. Rev., 2009, vol. 38, no. 5, pp. 1330–1352.

    Article  CAS  Google Scholar 

  16. Czaja, A.U., Trukhan, N., and Muller, U., Industrial applications of metal-organic frameworks, Chem. Soc. Rev., 2009, vol. 38, no. 5, pp. 1284–1293.

    Article  CAS  Google Scholar 

  17. Prokof’ev, V.Yu., Razgovorov, P.B., Zakharov, O.N., and Il’in, A.P., Modified aluminosilicate sorbents for vegetable oil purification, Khim. Khim. Tekhnol., 2008, vol. 51, no. 7, pp. 65–69.

    Google Scholar 

  18. Liu, J., Zang, F., Zou, X., et al., Environmentally friendly synthesis of highly hydrophobic and stable MIL-53 MOF nanomaterials, Chem. Commun., 2013, vol. 49, no. 67, pp. 7430–7432.

    Article  CAS  Google Scholar 

  19. Loiseau, T., Serre, C., Huguenard, C., et al., A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem.—Eur. J., 2004, vol. 10, no. 6, pp. 1373–1382.

    Article  CAS  Google Scholar 

  20. Férey, G. and Serre, C., Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences, Chem. Soc. Rev., 2009, vol. 38, no. 5, pp. 1380–1399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Vlasova.

Additional information

Original Russian Text © E.A. Vlasova, E.V. Naidenko, E.V. Kudrik, A.S. Makarova, S.V. Makarov, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 3, pp. 284–288.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasova, E.A., Naidenko, E.V., Kudrik, E.V. et al. Efficient synthesis of aluminum- and zinc-containing metal-organic frameworks. Inorg Mater 51, 236–240 (2015). https://doi.org/10.1134/S0020168515020181

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515020181

Keywords

Navigation