Skip to main content
Log in

Synthesis, structure, and thermal expansion of the Sr5(AO4)3L (A = P, V, Cr; L = F, Cl, Br) apatites

  • Published:
Inorganic Materials Aims and scope

Abstract

We report structure refinement results for Sr5(VO4)3Br (a = 10.2793(2) Å, c = 7.32089(8) Å, V = 669.92(2) Å3; R wp = 3.17%; R p = 2.39%) and thermal expansion data for nine strontium apatites. An increase in the ionic radius of the halogen in the apatites is accompanied by a change in its crystallographic site and, as a consequence, an increase in linear thermal expansion coefficients and thermal expansion anisotropy parameter (α a c ). A monoclinic phase of Sr5(CrO4)3Cl has been identified for the first time, which has negative linear thermal expansion coefficients along the crystallographic axis c. The volume expansivity of the strontium apatites correlates with their anisotropy parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tonsuaadu, K., Borissova, M., Bender, V., and Pelt, J., Thermal reactions in synthetic apatite-ammonium sulfate mixture, Phosphorus Sulfur Silicon Relat. Elements, 2004, vol. 179, no. 11, pp. 2395–2407.

    Article  CAS  Google Scholar 

  2. Moskalyk, R.R. and Alfantazi, A.M., Processing of vanadium: a review, Miner. Eng., 2003, vol. 16, no. 9, pp. 793–805.

    Article  CAS  Google Scholar 

  3. Best, S.M., Porter, A.E., Thian, E.S., and Huang, J., Bioceramics: past, present and for the future, J. Eur. Ceram. Soc., 2008, vol. 28, no. 7, pp. 1319–1327.

    Article  CAS  Google Scholar 

  4. Nakayama, S. and Sakamoto, M., Electrical properties of new type high oxide ionic conductor Re10Si6O27 (Re = La, Pr, Nd, Sm, Gd, Dy), J. Eur. Ceram. Soc., 1998, vol. 18, no. 10, pp. 1413–1418.

    Article  CAS  Google Scholar 

  5. Oliva, J., De Pablo, J., Cortina, J.-L., Cama, J., and Ayora, C., The use of apatite II (TM) to remove divalent metal ions zinc(II), lead(II), manganese(II) and iron(II) from water in passive treatment systems: column experiments, J. Hazard. Mater., 2010, vol. 184, nos. 1–3, pp. 364–374.

    Article  CAS  Google Scholar 

  6. Kim, J.Y., Dong, Z.L., and White, T.J., Model apatite systems for the stabilization of toxic metals: II, cation and metalloid substitutions in chlorapatites, J. Am. Ceram. Soc., 2005, vol. 88, no. 5, pp. 1253–1260.

    Article  CAS  Google Scholar 

  7. Audubert, F., Savariault, J.M., and Lacout, J.L., Pentalead tris(vanadate) iodide, a defect vanadinite-type compound, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1999, vol. 55, pp. 271–273.

    Article  Google Scholar 

  8. Wohl, G.R., Chettle, D.R., Pejovic-Milic, A., et al., Accumulation of bone strontium measured by in vivo XRF in rats supplemented with strontium citrate and strontium ranelate, Bone, 2013, vol. 52, no. 1, pp. 63–69.

    Article  CAS  Google Scholar 

  9. Knyazev, A.V., Chernorukov, N.G., and Bulanov, E.N., Apatite-structured compounds: synthesis and high-temperature investigation, Mater. Chem. Phys., 2012, vol. 132, nos. 2–3, pp. 773–781.

    Article  CAS  Google Scholar 

  10. Chernorukov, N.G., Knyazev, A.V., and Bulanov, E.N., Phase transitions and thermal expansion of apatite-structured compounds, Inorg. Mater, 2011, vol. 47, no. 2, pp. 172–177.

    Article  CAS  Google Scholar 

  11. Knyazev, A.V., Maczka, M., Bulanov, E.N., et al., High-temperature thermal and X-ray diffraction studies, and room-temperature spectroscopic investigation of some inorganic pigments, Dyes Pigments, 2011, vol. 91, no. 3, pp. 286–293.

    Article  CAS  Google Scholar 

  12. Rietveld, H.M., The Rietveld method—ahistorical perspective, Aust. J. Phys., 1988, vol. 41, no. 2, pp. 113–116.

    Article  CAS  Google Scholar 

  13. Izumi, F. and Ikeda, T.A., Rietveld-analysis program RIETAN-98 and its applications to zeolites, Eur. Powder Diffr., 2000, vol. 321-3,parts 1–2, pp. 198–203.

    Google Scholar 

  14. Knyazev, A.V., Bulanov, E.N., Korshunov, A.O., and Krasheninnikova, O.V., Synthesis and thermal expansion of some lanthanide-containing apatites, Inorg. Mater, 2013, vol. 49, no. 11, pp. 1133–1137.

    Article  CAS  Google Scholar 

  15. Belousov, R.I. and Filatov, S.K., Algorithm for calculating the thermal expansion tensor and constructing the thermal expansion diagram for crystals, Glass Phys. Chem., 2007, vol. 33, no. 3, pp. 271–275.

    Article  CAS  Google Scholar 

  16. Alberius-Henning, P., Mattsson, C., and Lidin, S., Crystal structure of pentastrontium tris(phosphate) bromide, Sr5(PO4)3Br and of pentabarium tris(phosphate) bromide Ba5(PO4)3Br, two bromoapatites, Z. Kristallogr.-New Cryst. Struct., 2000, vol. 215, no. 3, pp. 345–346.

    CAS  Google Scholar 

  17. White, T.J. and Dong, Z.L., Structural derivation and crystal chemistry of apatites, Acta Crystallogr., Sect. B: Struct. Sci., 2003, vol. 59, pp. 1–16.

    Article  CAS  Google Scholar 

  18. Comodi, P., Liu, Y., Zanazzi, P.F., and Montagnoli, M., Structural and vibrational behaviour of fluorapatite with pressure. Part 1: In situ single-crystal X-ray diffraction investigation, Phys. Chem. Miner., 2001, vol. 28, no. 4, pp. 219–224.

    Article  CAS  Google Scholar 

  19. Hata, M., Marumo, F., Iwai, S., and Aoki, H., Structure of barium chlorapatite, Acta Crystallogr., Sect. B: Struct. Sci., 1979, vol. 35, pp. 2382–2384.

    Article  Google Scholar 

  20. Elliott, J.C., Dykes, E., and Mackie, P.E., Structure of bromapatite and the radius of the bromide ion, Acta Crystallogr. Sec. B: Struct. Sci., 1981, vol. 37, pp. 435–438.

    Article  Google Scholar 

  21. Sudarsanan, K., The structures of some cadmium ‘apatites’ Cd5(MO4)3X. I. Determination of the structures of Cd5(VO4)3I, Cd5(PO4)3Br and Cd5(AsO4)3Br, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1977, pp. 3136–3142.

    Google Scholar 

  22. White, T., Ferraris, C., Kim, J., and Madhavi, S., Apatite—an adaptive framework structure, Micro- and Mesoporous Mineral Phases, Ferraris, G. and Merlino, S., Eds., 2005, pp. 307–401.

    Google Scholar 

  23. Database of Ionic Radii, 1998.

  24. Herdtweck, E., Structure of decastrontium hexachromate(V) difluoride, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1991, vol. 47, pp. 1711–1712.

    Article  Google Scholar 

  25. Mueller-Buschbaum, H. and Sander, K.Z., Zur Kristallstruktur von Sr5(CrO4)3Cl, Z. Naturforsch., B: Chem. Sci., 1978, vol. 33, pp. 708–710.

    Google Scholar 

  26. Knyazev, A.V., Chernorukov, N.G., and Bulanov, E.N., Phase diagram of apatite system Ca10(PO4)6Cl2-Pb10(PO4)6Cl2, Thermochim. Acta, 2011, vol. 526, nos. 1–2, pp. 72–77.

    Article  CAS  Google Scholar 

  27. Knyazev, A.V., Chernorukov, N.G., and Bulanov, E.N., Isomorphism and phase diagram of Pb5(PO4)3F-Pb5(PO4)3Cl system, Thermochim. Acta, 2011, vol. 513, nos. 1–2, pp. 112–118.

    Article  CAS  Google Scholar 

  28. Chernorukov, N.G., Knyazev, A.V., and Bulanov, E.N., Isomorphism and phase diagram of the Pb5(PO4)3Cl-Pb5(VO4)3Cl system, Russ. J. Inorg. Chem., 2010, vol. 55, no. 9, pp. 1463–1470.

    Article  CAS  Google Scholar 

  29. Elliott, J.C., Mackie, P.E., and Young, R.A., Monoclinic hydroxyapatite, Science, 1973, vol. 180, no. 4090, pp. 1055–1057.

    Article  CAS  Google Scholar 

  30. Mackie, P.E., Young, R.A., and Elliott, J.C., Monoclinic structure of synthetic Ca5(PO4)3Cl, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1972, vol. 28, no. 6, p. 1840–1848.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Knyazev.

Additional information

Original Russian Text © A.V. Knyazev, E.N. Bulanov, V.Zh. Korokin, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 3, pp. 293–304.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, A.V., Bulanov, E.N. & Korokin, V.Z. Synthesis, structure, and thermal expansion of the Sr5(AO4)3L (A = P, V, Cr; L = F, Cl, Br) apatites. Inorg Mater 51, 245–256 (2015). https://doi.org/10.1134/S0020168515020107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515020107

Keywords

Navigation