Skip to main content
Log in

Heat capacity of ScVO4 from 328 to 1000 K

  • Published:
Inorganic Materials Aims and scope

Abstract

The heat capacity of ScVO4 has been determined by differential scanning calorimetry in the temperature range 328–1000 K. The experimental C p (T) data have been used to evaluate the thermodynamic functions of scandium orthovanadate: enthalpy increment H 0(T) - H 0(328 K) and entropy change S 0(T) - S 0(328 K). Data on the temperature effect (30–1000 K) on the heat capacity of ScVO4 have been systematized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan X.-li, Wu, X., Zhou H.-fei, et al., Growth of laser single-crystals Er:YVO4 by floating zone method, J. Cryst. Growth, 2000, vol. 220, pp. 543–547.

    Article  CAS  Google Scholar 

  2. Cong, H., Zhang, H., Yao, B., et al., ScVO4: explorations of novel crystalline inorganic optical materials in rare-earth orthovanadate systems, Cryst. Growth Des., 2010, vol. 10, pp. 4389–4400.

    Article  CAS  Google Scholar 

  3. Yao, B., Wu, K., Zhang, C., et al., Crystal growth and laser performance of neodymium-doped scandium orthovanadate, J. Cryst. Growth, 2010, vol. 312, pp. 720–723.

    Article  CAS  Google Scholar 

  4. Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., et al., Thermodynamic functions of ScVO4 at temperatures from 0 to 350 K, Inorg. Mater., 2012, vol. 48, no. 8, pp. 845–850.

    Article  CAS  Google Scholar 

  5. Chakoumakos, B.C., Abraham, M.M., and Boather, L.A., Crystal structure refinements of zircon-type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu), Solid State Chem., 1994, vol. 109, pp. 197–202.

    Article  CAS  Google Scholar 

  6. Bondar’, I.A., Vinogradova, N.V., Dem’yanets, L.N., et al., Soedineniya redkozemel’nykh elementov. Silikaty, germanaty, fosfaty, arsenaty, vanadaty (Rare-Earth Silicates, Germanates, Phosphates, Arsenates, and Vanadates), Moscow: Nauka, 1983.

    Google Scholar 

  7. Panchal, V., Manjon, F.J., Errandonea, D., et al., High-pressure study of ScVO4 by Raman scattering and ab initio calculations, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 83, paper 064 111.

  8. Dorogova, M., Navrotsky, A., and Boatner, L.A., Enthalpies of formation of rare orthovanadates REVO4, J. Solid State Chem., 2007, vol. 180, pp. 847–851.

    Article  CAS  Google Scholar 

  9. Solov’ev, O.I., Rusakov, D.A., Filaretov, A.A., and Komissarova, L.N., Phase formation in the Ag3VO4-ScVO4 quasi-binary system, Russ. J. Inorg. Chem., 2013, vol. 58, no. 2, pp. 209–212.

    Article  Google Scholar 

  10. Solovyov, L.A., Full-profile refinement by derivative difference minimization, J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749.

    Article  CAS  Google Scholar 

  11. Naumov, V.A., X-ray diffraction study of scandium, yttrium, cerium, neodymium, and gadolinium orthovanadates, Zh. Strukt. Khim., 1962, vol. 3, no. 5, pp. 608–611.

    CAS  Google Scholar 

  12. Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1362–1365.

    Article  CAS  Google Scholar 

  13. Denisova, L.T., Kargin, Yu.F., Chumilina, L.G., et al., High-temperature heat capacity of Sc2Cu2O5, Inorg. Mater., 2014, vol. 50, no. 5, pp. 482–484.

    Article  CAS  Google Scholar 

  14. Fotiev, A.A., Slobodin, B.V., Khodos, M.Ya., et al., Vanadaty. Sostav, sintez, struktura, svoistva (Composition, Synthesis, Structure, and properties of Vanadates), Moscow: Nauka, 1988.

    Google Scholar 

  15. Ma, J., Wu, Q., and Ding, Y., Selective synthesis of monoclinic and tetragonal phase LaVO4 nanorods via oxides-hydrothermal route, J. Nanopart. Res., 2008, vol. 10, pp. 775–786.

    Article  CAS  Google Scholar 

  16. Kolitsch, U. and Holtstam, D., Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields, Eur. J. Mineral., 2004, vol. 16, pp. 117–126.

    Article  CAS  Google Scholar 

  17. Ropp, R.C. and Carroll, B., Dimorphic lanthanum orthovanadate, J. Inorg. Nucl. Chem., 1973, vol. 35, pp. 1153–1157.

    Article  CAS  Google Scholar 

  18. Bashir, J. and Khan, M.N., X-ray powder diffraction analysis of crystal structure of lanthanum orthovanadate, Mater. Lett., 2006, vol. 60, pp. 470–473.

    Article  CAS  Google Scholar 

  19. Maier, C.G. and Kelley, K.K., An equation for the representation of high-temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, no. 8, pp. 3243–3246.

    Article  CAS  Google Scholar 

  20. Pet’kov, V.I., Markin, A.V., and Smirnova, N.N., Thermodynamic properties of LiZr2(PO4)3 crystal phosphate, Russ. J. Phys. Chem. A, 2013, vol. 87, no. 8, pp. 1266–1271.

    Article  Google Scholar 

  21. Skuratov, S.M., Kolesov, V.P., and Vorob’ev, A.F., Termokhimiya (Thermochemistry), Moscow: Mosk. Gos. Univ., 1966, part II.

    Google Scholar 

  22. Richet, P. and Fiquet, G., High-temperature heat capacity and premelting of minerals in the system MgO-CaO-Al2O3-SiO2, J. Geophys. Res. B, 1991, vol. 96, no. 1, pp. 445–456.

    Article  CAS  Google Scholar 

  23. Chudnenko, K.V., Termodinamicheskoe modelirovanie v geokhimii: teoriya, algoritmy, programmnoe obespechenie, prilozheniya (Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, and Applications), Novosibirsk: Geo, 2010.

    Google Scholar 

  24. Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., and Komissarova, L.N., Heat capacity and thermodynamic functions of LaVO4 and LuVO4 from 7 to 345 K, Inorg. Mater., 2010, vol. 46, no. 7, pp. 776–783.

    Article  CAS  Google Scholar 

  25. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  26. Leitner, J., Chuchvales, P., Sedmidubsky, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, pp. 27–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Additional information

Original Russian Text © L.T. Denisova, Yu.F. Kargin, L.G. Chumilina, V.M. Denisov, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 2, pp. 204–207.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Kargin, Y.F., Chumilina, L.G. et al. Heat capacity of ScVO4 from 328 to 1000 K. Inorg Mater 51, 163–166 (2015). https://doi.org/10.1134/S0020168515020053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515020053

Keywords

Navigation