Skip to main content
Log in

Preparation of aqueous graphene suspensions by ultrasonication in the presence of a fluorine-containing surfactant

  • Published:
Inorganic Materials Aims and scope

Abstract

Concentrated suspensions of few-layer graphene particles have been prepared via natural graphite exfoliation by ultrasonic processing in the presence of a fluorine-containing surfactant and with no surfactant. The kinetics of the process and the properties of the products have been studied using laser diffraction, X-ray diffraction, transmission electron microscopy, electron diffraction, and Raman spectroscopy. We have obtained aqueous suspensions containing up to 95% few-layer graphene with a concentration of 6 mg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A.K. and Novoselov, K.S., The rise of graphene, Nat. Mater., 2007, vol. 6, pp. 183–191.

    Article  CAS  Google Scholar 

  2. Choi, W., Lahiri, I., Seelaboyina, R., and Kang, Y.S., Synthesis of graphene and its applications: a review, Crit. Rev. Solid State Mater. Sci., 2010, vol. 35, no. 1, pp. 52–71.

    Article  CAS  Google Scholar 

  3. Malig, J., Englert, J.M., Hirsch, A., and Guldi, D.M., Wet chemistry of graphene, Electrochem. Soc. Interface, 2011, vol. 16, pp. 53–56.

    Google Scholar 

  4. Ciesielski, A. and Samori, P., Graphene via sonication assisted liquid-phase exfoliation. Review article, Chem. Soc. Rev., 2013, no. 43, pp. 381–398.

    Google Scholar 

  5. Wang, X., Fulvio, P.F., Baker, G.A., Veith, G.M., Unocic, R.R., Mahurin, S.M., Chib, M., and Dai, S., Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids, Chem. Commun., 2010, no. 46, pp. 4487–4489.

    Google Scholar 

  6. Shih, C.-J., Vijayaraghavan, A., Krishnan, R., Sharma, R., Han, J.-H., Ham, M.-H., Jin, Z., Lin, S., Paulus, G.L.C., Reuel, N.F., Wang, Q.H., Blankschtein, D., and Strano, M.S., Biand trilayer graphene solutions, Nat. Nanotechnol., 2011, no. 6, pp. 439–445.

    Google Scholar 

  7. Bourlinos, A.B., Georgakilas, V., Zboril, R., Steriotis, T.A., and Stubos, A.K., Liquid-phase exfoliation of graphite towards solubilized graphenes, Small, 2009, vol. 5, no. 16, pp. 1841–1845.

    Article  CAS  Google Scholar 

  8. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., and Coleman, J.N., High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol., 2008, no. 3, pp. 563–568.

    Google Scholar 

  9. Park, S., An, J., Piner, R.D., Jung, I., Yang, D., Velamakanni, A., Nguyen, S.T., and Ruoff, R.S., Aqueous suspension and characterization of chemically modified graphene sheets, Chem. Mater., 2008, vol. 20, no. 21, pp. 6592–6594.

    Article  CAS  Google Scholar 

  10. Coleman, J.N., Liquid-phase exfoliation of nanotubes and graphene, Adv. Funct. Mater., 2009, vol. 19, no. 23, pp. 3680–3695.

    Article  CAS  Google Scholar 

  11. Green, A.A. and Hersam, M.C., Emerging methods for producing monodisperse graphene dispersions, J. Phys. Chem. Lett., 2010, vol. 1, pp. 544–549.

    Article  CAS  Google Scholar 

  12. Choi, E.-Y., Han, T.H., Hong, J., Kim, J.E., Lee, S.H., Kim, H.W., and Kim, S.O., Noncovalent functionalization of graphene with end-functional polymers, J. Mater. Chem., 2010, vol. 20, pp. 1907–1912.

    Article  CAS  Google Scholar 

  13. Huang, X., Qi, X., Boeyab, F., and Zhang, H., Graphene-based composites, Chem. Soc. Rev., 2012, vol. 41, pp. 666–686.

    Article  CAS  Google Scholar 

  14. Du, J. and Cheng, H.-M., The fabrication, properties, and uses of graphene/polymer composites, Macromol. Chem. Phys., 2012, vol. 213, pp. 1060–1077.

    Article  CAS  Google Scholar 

  15. Potts, J.R., Dreyer, D.R., Bielawski, C.W., and Ruoff, R.S., Graphene-based polymer nanocomposites, Polymer, 2011, vol. 52, no. 1, pp. 5–25.

    Article  CAS  Google Scholar 

  16. Zhang, Y., Nayak, T.R., Hong, H., and Cai, W., Graphene: a versatile nanoplatform for biomedical applications, Nanoscale, 2012, vol. 4, pp. 3833–3842.

    Article  CAS  Google Scholar 

  17. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 2007, vol. 45, no. 7, pp. 1558–1565.

    Article  CAS  Google Scholar 

  18. Eda, G., Fanchini, G., and Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol., 2008, vol. 3, no. 5, pp. 270–274.

    Article  CAS  Google Scholar 

  19. Becerril, H.A., Mao, J., Liu, Z.F., Stoltenberg, R.M., Bao, Z., and Chen, Y.S., Evaluation of solution-processed reduced graphene oxide films as transparent conductions, ACS Nano, 2008, vol. 2, no. 3, pp. 463–470.

    Article  CAS  Google Scholar 

  20. Gomez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., and Kern, K., Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett., 2007, vol. 7, no. 11, pp. 3499–3503.

    Article  CAS  Google Scholar 

  21. Coleman, J.N., Liquid exfoliation of defect-free graphene, Acc. Chem. Res., 2013, vol. 46, no. 1, pp. 14–22.

    Article  CAS  Google Scholar 

  22. Cheung, W., Brukh, R., Chiu, P.L., Zhou, T., Liu, Z., Garfunkel, E., and He, H., Production of graphene sheets by direct dispersion with aromatic healing agents, Small, 2010, vol. 6, no. 10, pp. 1071–1155.

    Article  Google Scholar 

  23. Smith, R.J., Lotya, M., and Coleman, J.N., The importance of repulsive potential barriers for the dispersion of graphene using surfactants, New J. Phys., 2010, vol. 12, paper 125 008.

    Article  Google Scholar 

  24. Sim, Y., Park, J., Kim, Y.J., Seong, M.-J., and Hong, S., Synthesis of graphene layers using graphite dispersion in aqueous surfactant solutions, J. Korean Phys. Soc., 2011, vol. 58, no. 4, pp. 938–942.

    CAS  Google Scholar 

  25. Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z., McGovern, I.T., Duesberg, G.S., and Coleman, J.N., Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc., 2009, vol. 131, no. 10, pp. 3611–3620.

    Article  CAS  Google Scholar 

  26. Geng, J., Kong, B.-S., Yang, S.B., and Jung, H.-T., Preparation of graphene relying on porphyrin exfoliation of graphite, Chem. Commun., 2010, vol. 46, pp. 5091–5093.

    Article  CAS  Google Scholar 

  27. Hsieh, A.G., Punckt, C., Korkut, S., and Aksay, I.A., Adsorption of sodium dodecyl sulfate on functionalized graphene measured by conductometric titration, J. Phys. Chem., 2013, vol. 117, pp. 7950–7958.

    Article  CAS  Google Scholar 

  28. Guardia, L., Fernández-Merino, M.J., Paredes, J.I., Solís-Fernández, P., Villar-Rodil, S., Martínez-Alonso, A., and Tascón, J.M.D., High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants, Carbon, 2011, vol. 49, no. 5, pp. 1653–1662.

    Article  CAS  Google Scholar 

  29. Ishikawa, N. and Kobayashi, Y., Fluorine Compounds. Chemistry and Application, Tokyo: Kodansha, 1979 (in Jpn.).

    Google Scholar 

  30. Holmberg, K., Jonsson, B., Kronberg, B., and Lindman, B., Surfactants and Polymers in Aqueous Solution, New York: Wiley, 2003.

    Google Scholar 

  31. Samoilov, V.M., Nikolaeva, A.V., Timoshchuk, E.I., Rochev, V.Ya., Lyapunov, A.Ya., Balaklienko, Yu.M., and Petrov, A.B., Determination of the particle size of fine synthetic graphite powders using laser diffraction, Prikl. Anal. Khim., 2012, vol. 3, no. 2 (8), pp. 28–35.

    Google Scholar 

  32. Allen, T., Particle size measurement, Powder Technology Series, Scarlett, B., Ed., New York: Chapman and Hall, 1990, 4th ed.

    Google Scholar 

  33. Samoilov, V.M. and Streletskii, A.N., Effect of ultracomminution on the crystal structure and graphitability of fine-particle carbon fillers, Khim. Tverd. Tela, 2004, no. 2, pp. 53–59.

    Google Scholar 

  34. Ramalingam, P., Pusuluri, S.T., Periasamy, S., Veerabahuc, R., and Kulandaivel, J., Role of deoxy group on the high concentration of graphene in surfactant/water media, RSC Adv., 2013, vol. 3, pp. 2369–2378.

    Article  CAS  Google Scholar 

  35. Kumar, A., Reddy, A.L.M., Mukherjee, A., Dubey, M., Zhan, X., Singh, N., Ci, L., Bilups, W.E., Nagurny, J., Mital, G., and Ajayan, P.M., Direct synthesis of lithium-intercalated graphene for electrochemical energy storage, ACS Nano, 2011, vol. 5, no. 6, pp. 4345–4349.

    Article  CAS  Google Scholar 

  36. Aladekomo, J.B. and Bragg, R.H., Structural transformations induced in graphite by grinding: analysis of 002 X-ray diffraction line profiles, Carbon, 1990, vol. 28, no. 6, pp. 897–906.

    Article  CAS  Google Scholar 

  37. Meyer, J.S., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.I., and Roth, S., The structure of suspended graphene sheets, Nature, 2007, vol. 446, pp. 60–63.

    Article  CAS  Google Scholar 

  38. Sun, Z., Kohama, S., Zhang, Z., Lomeda, J.R., and Tour, J.M., Soluble graphene through edge-selective functionalization, Nano Res., 2010, vol. 3, pp. 117–125.

    Article  CAS  Google Scholar 

  39. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K., Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 2006, vol. 97, no. 18, paper 187 401.

    Article  Google Scholar 

  40. Stadler, J., Schmid, T., and Zenobi, R., Nanoscale chemical imaging of single-layer graphene, ACS Nano, 2011, vol. 5, no. 5, pp. 8442–8448.

    Article  CAS  Google Scholar 

  41. Li, J., Ye, F., Vaziri, S., Muhammed, M., Lemme, M.C., and Ostling, M., A simple route towards high-concentration surfactant-free graphene dispersions, Carbon, 2012, vol. 50, no. 8, pp. 3113–3116.

    Article  CAS  Google Scholar 

  42. Yi, M., Shen, Z., Ma, S., and Zhang, X., A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite, J. Nanopart. Res., 2012, vol. 14:1003, pp. 1–9.

    Google Scholar 

  43. Lee, J., Novoselov, K.S., and Shin, H.S., Interaction between metal and graphene: dependence on the layer number of graphene, ACS Nano, 2011, vol. 5, no. 1, pp. 608–612.

    Article  CAS  Google Scholar 

  44. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 2009, vol. 9, no. 1, pp. 30–35.

    Article  CAS  Google Scholar 

  45. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999, p. 51.

    Google Scholar 

  46. Schabel, M.C. and Martins, J.L., Energetics of interplanar binding in graphite, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 46, no. 11, pp. 7185–7188.

    Article  CAS  Google Scholar 

  47. Charlier, J.-C., Gonze, X., and Michenaud, J.-P., Graphite interplanar bonding: electronic delocalization and van der Waals interaction, Europhys. Lett., 1994, vol. 28, no. 6, pp. 403–408.

    Article  CAS  Google Scholar 

  48. Hasegawa, M. and Nishidate, K., Semiempirical approach to the energetics of interlayer binding in graphite, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 70, paper 20 543.

  49. Khan, U., O’Neill, A., Lotya, M., De, S., and Coleman, J.N., High-concentration solvent exfoliation of graphene, Small, 2010, vol. 6, no. 7, pp. 864–871.

    Article  CAS  Google Scholar 

  50. Rangel Cortes, E., Magana Solis, L.F., and Arellano, J.S., Interaction of a water molecule with a graphene layer, Rev. Mexic. Fis., 2013, vol. 59, no. 1, pp. 118–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samoilov.

Additional information

Original Russian Text © V.M. Samoilov, A.V. Nikolaeva, E.A. Danilov, G.A. Erpuleva, N.N. Trofimova, S.S. Abramchuk, K.V. Ponkratov, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 2, pp. 137–145.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilov, V.M., Nikolaeva, A.V., Danilov, E.A. et al. Preparation of aqueous graphene suspensions by ultrasonication in the presence of a fluorine-containing surfactant. Inorg Mater 51, 98–105 (2015). https://doi.org/10.1134/S0020168515010161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168515010161

Keywords

Navigation