Abstract
We have compared (Ln2 − x Zr x )Zr2O7 + x/2 (Ln = Nd, Sm) pyrochlore-like solid solutions with interstitial oxide ion conduction and Ln2(Zr2 − x Ln x )O7 − δ (Ln = Nd, Sm) pyrochlore-like solid solutions with vacancy-mediated oxide ion conduction in the symmetric systems Nd2O3-ZrO2 (NdZrO) and Sm2O3-ZrO2 (SmZrO). We have studied their structure, microstructure, and transport properties and determined the excess oxygen content of the (Sm2 − x Zr x )Zr2O7 + x/2 (x = 0.2) material using thermal analysis and mass spectrometry in a reducing atmosphere (H2/Ar-He). The Ln2 ± x Zr2 ± x O7 ± x/2 (Ln = Nd, Sm) solid solutions have almost identical maximum oxygen vacancy and interstitial conductivities: (3–4) × 10−3 S/cm at 750°C. The lower oxygen vacancy conductivity of the Ln2(Zr2 − x Ln x )O7 − δ (Ln = Nd, Sm; 0 < x ≤ 0.3) solid solutions is due to the sharp decrease in it as a result of defect association processes, whereas the interstitial oxide ion conductivity of the (Ln2 − x Zr x )Zr2O7 + x/2 (Ln = Nd, Sm; 0.2 ≤ x < 0.48) pyrochlore-like solid solutions is essentially constant in a broad range of Ln2O3 concentrations.
This is a preview of subscription content,
to check access.References
Shinozaki, K., Miyauchi, M., Kuroda, K., Sakurai, O., Mizutani, N., and Kato, M., Oxygen-ion conduction in the Sm2Zr2O7 pyrochlore phase, J. Am. Ceram. Soc., 1979, vol. 62, pp. 538–539.
Shlyakhtina, A.V., Kolbanev, I.V., Knotko, A.V., Boguslavskii, M.V., Stefanovich, S.Yu., Karyagina, O.K., and Shcherbakova, L.G., Ionic Conductivity of Ln2 + x Zr2 − x O7 − x/2 (Ln = Sm-Gd) Solid Solutions, Inorg. Mater., 2005, vol. 41, no. 8, pp. 854–863.
Shlyakhtina, A.V., Knotko, A.V., Boguslavskii, M.V., Stefanovich, S.Yu., Kolbanev, I.V., Larina, L.L., and Shcherbakova, L.G., Effect of non-stoichiometry and synthesis temperature on the structure and conductivity of Ln2 + x M2 − x O7 − x/2 (Ln = Sm-Gd; M = Zr, Hf; x = 0–0.286), Solid State Ionics, 2007, vol. 178, pp. 59–66.
Van Dijk, T., de Vries, K.J., and Burggraaf, A.J., Electrical conductivity of fluorite and pyrochlore LnxZr1 − x O2 − x/2 (Ln = Gd, Nd) solid solutions, Phys. Status Solidi A, 1980, vol. 58, pp. 115–125.
Strickler, D.W. and Carlson, W.G., Electrical conductivity in the ZrO2-rich region of several M2O3-ZrO2 systems, J. Am. Ceram. Soc., 1965, vol. 48, pp. 286–289.
Neuimin, A.D. and Pal’guev, S.F., Electrical conductivity of solid oxides, Tr. Inst. Elektrokhim. Ural. Filiala Akad. Nauk SSSR, 1964, no. 5, pp. 145–155.
Lefevre, J., Perez, Y., and Collongues, R., On the equilibrium diagrams of ZrO2 with rare earth oxides, Bull. Soc. Chim. Fr., 1959, vol. 5, pp. 1969–1971.
Volchenkova, Z.S., Electrical conductivity of ZrO2-Nd2O3 materials, Izv. Akad. Nauk SSSR, Neorg. Mater., 1969, vol. 5, pp. 1096–1102.
Uehara, T., Koto, K., and Kanamaru, F., Stability and antiphase domain structure of the pyrochlore solid solution in the ZrO2-Gd2O3 system, Solid State Ionics, 1987, vol. 23, pp. 137–143.
Shlyakhtina, A.V. and Shcherbakova, L.G., New solid electrolytes of the pyrochlore family, Russ. J. Electrochem., 2012, vol. 48, no. 1, pp. 1–25.
Shlyakhtina, A.V. and Shcherbakova, L.G., Polymorphism and high-temperature conductivity of Ln2M2O7 (Ln = Sm-Lu, M = Ti, Zr, Hf) pyrochlores, Solid State Ionics, 2011, vol. 192, pp. 200–204.
Van Dijk, T., Helmholdt, R.B., and Burggraaf, A.J., Neutron powder diffraction studies of fluorite and pyrochlore NdxZr1 − x O2 − x/2 solid solutions with 0.25 < x < 0.55, Phys. Status Solidi B, 1980, vol. 101, pp. 765–774.
Clements, R., Hester, J.R., Kennedy, B.J., Ling, C.D., and Stampfl, A.P.J., The fluorite-pyrochlore transformation of Ho2−y NdyZr2O7, J. Solid State Chem., 2011, vol. 184, pp. 2108–2113.
Chiu, C.-W., Sheu, Y.-H., and Kao, H.-C.I., Phase transition and the thermal activated ordering of the ions with pyrochlore phase in Ln2Zr2O7 (Ln = Sm, Eu), J. Chin. Chem. Soc., 2010, vol. 57(4B), pp. 925–931.
Collongues, R., Queyroux, F., Perez, Y., Jorba, M., and Jilles, J.C., Structures et proprietes des composes formes par les oxydes de terres rares avec les oxides des elements du groupe 4a, Bull. Soc. Chim. Fr., 1965, vol. 4, pp. 1141–1149.
Arsent’ev, P.A., Glushkova, V.B., Evdokimov, A.A., Keler, E.K., Kravchenko, V.B., Kravchinskaya, M.V., Krzhizhanovskaya, V.A., Kuznetsov, A.K., Kurbanov, Kh.M., Potemkin, A.V., Tikhonov, P.A., and Tseitlin, M.N., Soedineniya redkozemel’nykh elementov. Tsirkonaty, gafnaty, niobaty, tantalaty, antimonaty (Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates), Moscow: Nauka, 1985.
Shannon, R.D. and Prewitt, C.T., Effective ionic radii in oxides and fluorides, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. 25, pp. 925–946.
Perezy Jorba, M., Contribution a l’etude des systems zircone-oxydes de terres rares, Ann. Chim., 1962, vol. 7, pp. 479–511.
Van Dijk, M.P., Mijlhoff, F.C., and Burggraaf, A.J., Pyrochlore microdomain formation in fluorite oxides, J. Solid State Chem., 1986, vol. 62, pp. 377–385.
Van Dijk, M.P., de Vries, K.J., and Burggraaf, A.J., Oxygen ion and mixed conductivity compounds with the fluorite and pyrochlore structure, Solid State Ionics, 1983, vol. 9, pp. 913–919.
Van Dijk, M.P., Cormack, A.N., Burggraaf, A.J., and Catlow, C.R.A., Defect structures and migration mechanisms in oxide pyrochlores, Solid State Ionics, 1985, vol. 17, pp. 159–167.
Yamamura, H., Nishino, H., Kakinuma, K., and Nomura, K., Electrical conductivity anomaly around fluorite-pyrochlore phase boundary, Solid State Ionics, 2003, vol. 158, pp. 359–356.
Collongues, R., Ann. Chim. (Paris), 1963, vol. 8, pp. 395–408.
ZView for Windows, Impedance/Gain Phase Analysis Software, Version 2.3f, Scribner Associates.
Thomson, J.B., Armstrong, A.R., and Bruce, P.G., An interstitial pyrochlore formed by chemical intercalation of oxygen, Chem. Commun., 1996, pp. 1165–1166.
Boukamp, B., A nonlinear least squares fit procedure for analysis of immitance data of electrochemical systems, Solid State Ionics, 1986, vol. 20, pp. 31–44.
Nernst, W., Uber die elektrolytische Leitungfester Korper bei sehr hohen Temperaturen, Z. Electrochem., 1899, vol. 6, pp. 41–43.
Volchenkova, Z.S. and Zubankova, D.S., Electrical conductivity and ion transport numbers of HfO2-Gd2O3 materials, Izv. Akad. Nauk SSSR, Neorg. Mater., 1987, vol. 23, pp. 1175–1179.
Hagiwara, T., Yamamura, H., Nomura, K., and Igawa, M., Relationships between crystal structure and oxide-ion conduction in Ln2Zr2O7 (Ln = Eu, Nd and La) system deduced by neutron and X-ray diffraction, J. Ceram. Soc. Jpn., 2013, vol. 121, pp. 205–210.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.V. Shlyakhtina, D.A. Belov, A.V. Knotko, I.V. Kolbanev, A.N. Streletskii, O.K. Karyagina, L.G. Shcherbakova, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 10, pp. 1119–1134.
Rights and permissions
About this article
Cite this article
Shlyakhtina, A.V., Belov, D.A., Knotko, A.V. et al. Oxygen interstitial and vacancy conduction in symmetric Ln2 ± x Zr2 ± x O7 ± x/2 (Ln = Nd, Sm) solid solutions. Inorg Mater 50, 1035–1049 (2014). https://doi.org/10.1134/S002016851410015X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S002016851410015X