Skip to main content
Log in

Oxygen interstitial and vacancy conduction in symmetric Ln2 ± x Zr2 ± x O7 ± x/2 (Ln = Nd, Sm) solid solutions

Inorganic Materials Aims and scope

Cite this article

Abstract

We have compared (Ln2 − x Zr x )Zr2O7 + x/2 (Ln = Nd, Sm) pyrochlore-like solid solutions with interstitial oxide ion conduction and Ln2(Zr2 − x Ln x )O7 − δ (Ln = Nd, Sm) pyrochlore-like solid solutions with vacancy-mediated oxide ion conduction in the symmetric systems Nd2O3-ZrO2 (NdZrO) and Sm2O3-ZrO2 (SmZrO). We have studied their structure, microstructure, and transport properties and determined the excess oxygen content of the (Sm2 − x Zr x )Zr2O7 + x/2 (x = 0.2) material using thermal analysis and mass spectrometry in a reducing atmosphere (H2/Ar-He). The Ln2 ± x Zr2 ± x O7 ± x/2 (Ln = Nd, Sm) solid solutions have almost identical maximum oxygen vacancy and interstitial conductivities: (3–4) × 10−3 S/cm at 750°C. The lower oxygen vacancy conductivity of the Ln2(Zr2 − x Ln x )O7 − δ (Ln = Nd, Sm; 0 < x ≤ 0.3) solid solutions is due to the sharp decrease in it as a result of defect association processes, whereas the interstitial oxide ion conductivity of the (Ln2 − x Zr x )Zr2O7 + x/2 (Ln = Nd, Sm; 0.2 ≤ x < 0.48) pyrochlore-like solid solutions is essentially constant in a broad range of Ln2O3 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Shinozaki, K., Miyauchi, M., Kuroda, K., Sakurai, O., Mizutani, N., and Kato, M., Oxygen-ion conduction in the Sm2Zr2O7 pyrochlore phase, J. Am. Ceram. Soc., 1979, vol. 62, pp. 538–539.

    Article  CAS  Google Scholar 

  2. Shlyakhtina, A.V., Kolbanev, I.V., Knotko, A.V., Boguslavskii, M.V., Stefanovich, S.Yu., Karyagina, O.K., and Shcherbakova, L.G., Ionic Conductivity of Ln2 + x Zr2 − x O7 − x/2 (Ln = Sm-Gd) Solid Solutions, Inorg. Mater., 2005, vol. 41, no. 8, pp. 854–863.

    Article  CAS  Google Scholar 

  3. Shlyakhtina, A.V., Knotko, A.V., Boguslavskii, M.V., Stefanovich, S.Yu., Kolbanev, I.V., Larina, L.L., and Shcherbakova, L.G., Effect of non-stoichiometry and synthesis temperature on the structure and conductivity of Ln2 + x M2 − x O7 − x/2 (Ln = Sm-Gd; M = Zr, Hf; x = 0–0.286), Solid State Ionics, 2007, vol. 178, pp. 59–66.

    Article  CAS  Google Scholar 

  4. Van Dijk, T., de Vries, K.J., and Burggraaf, A.J., Electrical conductivity of fluorite and pyrochlore LnxZr1 − x O2 − x/2 (Ln = Gd, Nd) solid solutions, Phys. Status Solidi A, 1980, vol. 58, pp. 115–125.

    Article  Google Scholar 

  5. Strickler, D.W. and Carlson, W.G., Electrical conductivity in the ZrO2-rich region of several M2O3-ZrO2 systems, J. Am. Ceram. Soc., 1965, vol. 48, pp. 286–289.

    Article  CAS  Google Scholar 

  6. Neuimin, A.D. and Pal’guev, S.F., Electrical conductivity of solid oxides, Tr. Inst. Elektrokhim. Ural. Filiala Akad. Nauk SSSR, 1964, no. 5, pp. 145–155.

    Google Scholar 

  7. Lefevre, J., Perez, Y., and Collongues, R., On the equilibrium diagrams of ZrO2 with rare earth oxides, Bull. Soc. Chim. Fr., 1959, vol. 5, pp. 1969–1971.

    Google Scholar 

  8. Volchenkova, Z.S., Electrical conductivity of ZrO2-Nd2O3 materials, Izv. Akad. Nauk SSSR, Neorg. Mater., 1969, vol. 5, pp. 1096–1102.

    CAS  Google Scholar 

  9. Uehara, T., Koto, K., and Kanamaru, F., Stability and antiphase domain structure of the pyrochlore solid solution in the ZrO2-Gd2O3 system, Solid State Ionics, 1987, vol. 23, pp. 137–143.

    Article  CAS  Google Scholar 

  10. Shlyakhtina, A.V. and Shcherbakova, L.G., New solid electrolytes of the pyrochlore family, Russ. J. Electrochem., 2012, vol. 48, no. 1, pp. 1–25.

    Article  CAS  Google Scholar 

  11. Shlyakhtina, A.V. and Shcherbakova, L.G., Polymorphism and high-temperature conductivity of Ln2M2O7 (Ln = Sm-Lu, M = Ti, Zr, Hf) pyrochlores, Solid State Ionics, 2011, vol. 192, pp. 200–204.

    Article  CAS  Google Scholar 

  12. Van Dijk, T., Helmholdt, R.B., and Burggraaf, A.J., Neutron powder diffraction studies of fluorite and pyrochlore NdxZr1 − x O2 − x/2 solid solutions with 0.25 < x < 0.55, Phys. Status Solidi B, 1980, vol. 101, pp. 765–774.

    Article  Google Scholar 

  13. Clements, R., Hester, J.R., Kennedy, B.J., Ling, C.D., and Stampfl, A.P.J., The fluorite-pyrochlore transformation of Ho2−y NdyZr2O7, J. Solid State Chem., 2011, vol. 184, pp. 2108–2113.

    Article  CAS  Google Scholar 

  14. Chiu, C.-W., Sheu, Y.-H., and Kao, H.-C.I., Phase transition and the thermal activated ordering of the ions with pyrochlore phase in Ln2Zr2O7 (Ln = Sm, Eu), J. Chin. Chem. Soc., 2010, vol. 57(4B), pp. 925–931.

    CAS  Google Scholar 

  15. Collongues, R., Queyroux, F., Perez, Y., Jorba, M., and Jilles, J.C., Structures et proprietes des composes formes par les oxydes de terres rares avec les oxides des elements du groupe 4a, Bull. Soc. Chim. Fr., 1965, vol. 4, pp. 1141–1149.

    Google Scholar 

  16. Arsent’ev, P.A., Glushkova, V.B., Evdokimov, A.A., Keler, E.K., Kravchenko, V.B., Kravchinskaya, M.V., Krzhizhanovskaya, V.A., Kuznetsov, A.K., Kurbanov, Kh.M., Potemkin, A.V., Tikhonov, P.A., and Tseitlin, M.N., Soedineniya redkozemel’nykh elementov. Tsirkonaty, gafnaty, niobaty, tantalaty, antimonaty (Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates), Moscow: Nauka, 1985.

    Google Scholar 

  17. Shannon, R.D. and Prewitt, C.T., Effective ionic radii in oxides and fluorides, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. 25, pp. 925–946.

    Article  CAS  Google Scholar 

  18. Perezy Jorba, M., Contribution a l’etude des systems zircone-oxydes de terres rares, Ann. Chim., 1962, vol. 7, pp. 479–511.

    Google Scholar 

  19. Van Dijk, M.P., Mijlhoff, F.C., and Burggraaf, A.J., Pyrochlore microdomain formation in fluorite oxides, J. Solid State Chem., 1986, vol. 62, pp. 377–385.

    Article  Google Scholar 

  20. Van Dijk, M.P., de Vries, K.J., and Burggraaf, A.J., Oxygen ion and mixed conductivity compounds with the fluorite and pyrochlore structure, Solid State Ionics, 1983, vol. 9, pp. 913–919.

    Google Scholar 

  21. Van Dijk, M.P., Cormack, A.N., Burggraaf, A.J., and Catlow, C.R.A., Defect structures and migration mechanisms in oxide pyrochlores, Solid State Ionics, 1985, vol. 17, pp. 159–167.

    Article  Google Scholar 

  22. Yamamura, H., Nishino, H., Kakinuma, K., and Nomura, K., Electrical conductivity anomaly around fluorite-pyrochlore phase boundary, Solid State Ionics, 2003, vol. 158, pp. 359–356.

    Article  CAS  Google Scholar 

  23. Collongues, R., Ann. Chim. (Paris), 1963, vol. 8, pp. 395–408.

    CAS  Google Scholar 

  24. ZView for Windows, Impedance/Gain Phase Analysis Software, Version 2.3f, Scribner Associates.

  25. Thomson, J.B., Armstrong, A.R., and Bruce, P.G., An interstitial pyrochlore formed by chemical intercalation of oxygen, Chem. Commun., 1996, pp. 1165–1166.

    Google Scholar 

  26. Boukamp, B., A nonlinear least squares fit procedure for analysis of immitance data of electrochemical systems, Solid State Ionics, 1986, vol. 20, pp. 31–44.

    Article  CAS  Google Scholar 

  27. Nernst, W., Uber die elektrolytische Leitungfester Korper bei sehr hohen Temperaturen, Z. Electrochem., 1899, vol. 6, pp. 41–43.

    Article  Google Scholar 

  28. Volchenkova, Z.S. and Zubankova, D.S., Electrical conductivity and ion transport numbers of HfO2-Gd2O3 materials, Izv. Akad. Nauk SSSR, Neorg. Mater., 1987, vol. 23, pp. 1175–1179.

    CAS  Google Scholar 

  29. Hagiwara, T., Yamamura, H., Nomura, K., and Igawa, M., Relationships between crystal structure and oxide-ion conduction in Ln2Zr2O7 (Ln = Eu, Nd and La) system deduced by neutron and X-ray diffraction, J. Ceram. Soc. Jpn., 2013, vol. 121, pp. 205–210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shlyakhtina.

Additional information

Original Russian Text © A.V. Shlyakhtina, D.A. Belov, A.V. Knotko, I.V. Kolbanev, A.N. Streletskii, O.K. Karyagina, L.G. Shcherbakova, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 10, pp. 1119–1134.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyakhtina, A.V., Belov, D.A., Knotko, A.V. et al. Oxygen interstitial and vacancy conduction in symmetric Ln2 ± x Zr2 ± x O7 ± x/2 (Ln = Nd, Sm) solid solutions. Inorg Mater 50, 1035–1049 (2014). https://doi.org/10.1134/S002016851410015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851410015X

Keywords

Navigation