Inorganic Materials

, Volume 50, Issue 10, pp 1035–1049 | Cite as

Oxygen interstitial and vacancy conduction in symmetric Ln2 ± x Zr2 ± x O7 ± x/2 (Ln = Nd, Sm) solid solutions

  • A. V. Shlyakhtina
  • D. A. Belov
  • A. V. Knotko
  • I. V. Kolbanev
  • A. N. Streletskii
  • O. K. Karyagina
  • L. G. Shcherbakova
Article

Abstract

We have compared (Ln2 − x Zr x )Zr2O7 + x/2 (Ln = Nd, Sm) pyrochlore-like solid solutions with interstitial oxide ion conduction and Ln2(Zr2 − x Ln x )O7 − δ (Ln = Nd, Sm) pyrochlore-like solid solutions with vacancy-mediated oxide ion conduction in the symmetric systems Nd2O3-ZrO2 (NdZrO) and Sm2O3-ZrO2 (SmZrO). We have studied their structure, microstructure, and transport properties and determined the excess oxygen content of the (Sm2 − x Zr x )Zr2O7 + x/2 (x = 0.2) material using thermal analysis and mass spectrometry in a reducing atmosphere (H2/Ar-He). The Ln2 ± x Zr2 ± x O7 ± x/2 (Ln = Nd, Sm) solid solutions have almost identical maximum oxygen vacancy and interstitial conductivities: (3–4) × 10−3 S/cm at 750°C. The lower oxygen vacancy conductivity of the Ln2(Zr2 − x Ln x )O7 − δ (Ln = Nd, Sm; 0 < x ≤ 0.3) solid solutions is due to the sharp decrease in it as a result of defect association processes, whereas the interstitial oxide ion conductivity of the (Ln2 − x Zr x )Zr2O7 + x/2 (Ln = Nd, Sm; 0.2 ≤ x < 0.48) pyrochlore-like solid solutions is essentially constant in a broad range of Ln2O3 concentrations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shinozaki, K., Miyauchi, M., Kuroda, K., Sakurai, O., Mizutani, N., and Kato, M., Oxygen-ion conduction in the Sm2Zr2O7 pyrochlore phase, J. Am. Ceram. Soc., 1979, vol. 62, pp. 538–539.CrossRefGoogle Scholar
  2. 2.
    Shlyakhtina, A.V., Kolbanev, I.V., Knotko, A.V., Boguslavskii, M.V., Stefanovich, S.Yu., Karyagina, O.K., and Shcherbakova, L.G., Ionic Conductivity of Ln2 + xZr2 − xO7 − x/2 (Ln = Sm-Gd) Solid Solutions, Inorg. Mater., 2005, vol. 41, no. 8, pp. 854–863.CrossRefGoogle Scholar
  3. 3.
    Shlyakhtina, A.V., Knotko, A.V., Boguslavskii, M.V., Stefanovich, S.Yu., Kolbanev, I.V., Larina, L.L., and Shcherbakova, L.G., Effect of non-stoichiometry and synthesis temperature on the structure and conductivity of Ln2 + xM2 − xO7 − x/2 (Ln = Sm-Gd; M = Zr, Hf; x = 0–0.286), Solid State Ionics, 2007, vol. 178, pp. 59–66.CrossRefGoogle Scholar
  4. 4.
    Van Dijk, T., de Vries, K.J., and Burggraaf, A.J., Electrical conductivity of fluorite and pyrochlore LnxZr1 − xO2 − x/2 (Ln = Gd, Nd) solid solutions, Phys. Status Solidi A, 1980, vol. 58, pp. 115–125.CrossRefGoogle Scholar
  5. 5.
    Strickler, D.W. and Carlson, W.G., Electrical conductivity in the ZrO2-rich region of several M2O3-ZrO2 systems, J. Am. Ceram. Soc., 1965, vol. 48, pp. 286–289.CrossRefGoogle Scholar
  6. 6.
    Neuimin, A.D. and Pal’guev, S.F., Electrical conductivity of solid oxides, Tr. Inst. Elektrokhim. Ural. Filiala Akad. Nauk SSSR, 1964, no. 5, pp. 145–155.Google Scholar
  7. 7.
    Lefevre, J., Perez, Y., and Collongues, R., On the equilibrium diagrams of ZrO2 with rare earth oxides, Bull. Soc. Chim. Fr., 1959, vol. 5, pp. 1969–1971.Google Scholar
  8. 8.
    Volchenkova, Z.S., Electrical conductivity of ZrO2-Nd2O3 materials, Izv. Akad. Nauk SSSR, Neorg. Mater., 1969, vol. 5, pp. 1096–1102.Google Scholar
  9. 9.
    Uehara, T., Koto, K., and Kanamaru, F., Stability and antiphase domain structure of the pyrochlore solid solution in the ZrO2-Gd2O3 system, Solid State Ionics, 1987, vol. 23, pp. 137–143.CrossRefGoogle Scholar
  10. 10.
    Shlyakhtina, A.V. and Shcherbakova, L.G., New solid electrolytes of the pyrochlore family, Russ. J. Electrochem., 2012, vol. 48, no. 1, pp. 1–25.CrossRefGoogle Scholar
  11. 11.
    Shlyakhtina, A.V. and Shcherbakova, L.G., Polymorphism and high-temperature conductivity of Ln2M2O7 (Ln = Sm-Lu, M = Ti, Zr, Hf) pyrochlores, Solid State Ionics, 2011, vol. 192, pp. 200–204.CrossRefGoogle Scholar
  12. 12.
    Van Dijk, T., Helmholdt, R.B., and Burggraaf, A.J., Neutron powder diffraction studies of fluorite and pyrochlore NdxZr1 − xO2 − x/2 solid solutions with 0.25 < x < 0.55, Phys. Status Solidi B, 1980, vol. 101, pp. 765–774.CrossRefGoogle Scholar
  13. 13.
    Clements, R., Hester, J.R., Kennedy, B.J., Ling, C.D., and Stampfl, A.P.J., The fluorite-pyrochlore transformation of Ho2−yNdyZr2O7, J. Solid State Chem., 2011, vol. 184, pp. 2108–2113.CrossRefGoogle Scholar
  14. 14.
    Chiu, C.-W., Sheu, Y.-H., and Kao, H.-C.I., Phase transition and the thermal activated ordering of the ions with pyrochlore phase in Ln2Zr2O7 (Ln = Sm, Eu), J. Chin. Chem. Soc., 2010, vol. 57(4B), pp. 925–931.Google Scholar
  15. 15.
    Collongues, R., Queyroux, F., Perez, Y., Jorba, M., and Jilles, J.C., Structures et proprietes des composes formes par les oxydes de terres rares avec les oxides des elements du groupe 4a, Bull. Soc. Chim. Fr., 1965, vol. 4, pp. 1141–1149.Google Scholar
  16. 16.
    Arsent’ev, P.A., Glushkova, V.B., Evdokimov, A.A., Keler, E.K., Kravchenko, V.B., Kravchinskaya, M.V., Krzhizhanovskaya, V.A., Kuznetsov, A.K., Kurbanov, Kh.M., Potemkin, A.V., Tikhonov, P.A., and Tseitlin, M.N., Soedineniya redkozemel’nykh elementov. Tsirkonaty, gafnaty, niobaty, tantalaty, antimonaty (Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates), Moscow: Nauka, 1985.Google Scholar
  17. 17.
    Shannon, R.D. and Prewitt, C.T., Effective ionic radii in oxides and fluorides, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. 25, pp. 925–946.CrossRefGoogle Scholar
  18. 18.
    Perezy Jorba, M., Contribution a l’etude des systems zircone-oxydes de terres rares, Ann. Chim., 1962, vol. 7, pp. 479–511.Google Scholar
  19. 19.
    Van Dijk, M.P., Mijlhoff, F.C., and Burggraaf, A.J., Pyrochlore microdomain formation in fluorite oxides, J. Solid State Chem., 1986, vol. 62, pp. 377–385.CrossRefGoogle Scholar
  20. 20.
    Van Dijk, M.P., de Vries, K.J., and Burggraaf, A.J., Oxygen ion and mixed conductivity compounds with the fluorite and pyrochlore structure, Solid State Ionics, 1983, vol. 9, pp. 913–919.Google Scholar
  21. 21.
    Van Dijk, M.P., Cormack, A.N., Burggraaf, A.J., and Catlow, C.R.A., Defect structures and migration mechanisms in oxide pyrochlores, Solid State Ionics, 1985, vol. 17, pp. 159–167.CrossRefGoogle Scholar
  22. 22.
    Yamamura, H., Nishino, H., Kakinuma, K., and Nomura, K., Electrical conductivity anomaly around fluorite-pyrochlore phase boundary, Solid State Ionics, 2003, vol. 158, pp. 359–356.CrossRefGoogle Scholar
  23. 23.
    Collongues, R., Ann. Chim. (Paris), 1963, vol. 8, pp. 395–408.Google Scholar
  24. 24.
    ZView for Windows, Impedance/Gain Phase Analysis Software, Version 2.3f, Scribner Associates.Google Scholar
  25. 25.
    Thomson, J.B., Armstrong, A.R., and Bruce, P.G., An interstitial pyrochlore formed by chemical intercalation of oxygen, Chem. Commun., 1996, pp. 1165–1166.Google Scholar
  26. 26.
    Boukamp, B., A nonlinear least squares fit procedure for analysis of immitance data of electrochemical systems, Solid State Ionics, 1986, vol. 20, pp. 31–44.CrossRefGoogle Scholar
  27. 27.
    Nernst, W., Uber die elektrolytische Leitungfester Korper bei sehr hohen Temperaturen, Z. Electrochem., 1899, vol. 6, pp. 41–43.CrossRefGoogle Scholar
  28. 28.
    Volchenkova, Z.S. and Zubankova, D.S., Electrical conductivity and ion transport numbers of HfO2-Gd2O3 materials, Izv. Akad. Nauk SSSR, Neorg. Mater., 1987, vol. 23, pp. 1175–1179.Google Scholar
  29. 29.
    Hagiwara, T., Yamamura, H., Nomura, K., and Igawa, M., Relationships between crystal structure and oxide-ion conduction in Ln2Zr2O7 (Ln = Eu, Nd and La) system deduced by neutron and X-ray diffraction, J. Ceram. Soc. Jpn., 2013, vol. 121, pp. 205–210.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Shlyakhtina
    • 1
  • D. A. Belov
    • 1
    • 2
  • A. V. Knotko
    • 2
  • I. V. Kolbanev
    • 1
  • A. N. Streletskii
    • 1
  • O. K. Karyagina
    • 3
  • L. G. Shcherbakova
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations