Skip to main content
Log in

Ways of improving functional parameters of high-temperature ferroelectric/piezoelectric ceramics based on BiScO3-PbTiO3 solid solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

We have examined the effect of preparation conditions on the structure and piezoelectric characteristics of ceramic samples in the form of thin piezoelectric disks cut from large sintered (1 − x)BiScO3 - xPbTiO3 (x = 0.635–0.645) bodies. The use of chemical coprecipitation from nitrate solutions allowed us to prepare nanopowders of controlled composition and ensured better piezoelectric activity of the materials in comparison with ceramics produced by solid-state reactions. We discuss possible ways of optimizing functional parameters of piezoelectric elements from BSPT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eitel, R.E., Randall, C.A., Shrout, Th.R., et al., Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1 − x)BiScO3-xPbTiO3, Jpn. J. Appl. Phys., 2002, vol. 41, pp. 2099–2104.

    Article  CAS  Google Scholar 

  2. Tomashpol’skii, Yu.Ya., Zubova, E.V., Burdina, K.P., and Venevtsev, Yu.N., Kristallografiya, 1968, vol. 1, no. 6, pp. 987–990.

    Google Scholar 

  3. Drahus, M.D., Jakes, P., Erdem, E., et al., Manganesedoped (1 − x)BiScO3-xPbTiO3 high-temperature ferroelectrics: defect structure and mechanism of enhanced electric resistivity, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 84, no. 6, paper 064 113.

    Google Scholar 

  4. Sehirlioglu, A., Sayir, A., and Dynys, F., High temperature properties of BiScO3-PbTiO3 piezoelectric ceramics, J. Appl. Phys., 2009, vol. 105, paper 114 102.

  5. Jaffe, B., Cook, W.R., and Jaffe, H., Piezoelectric Ceramics, London: Academic, 1971.

    Google Scholar 

  6. Dantsiger, A.Ya., et al., Vysokoeffektivnye p’ezokeramicheskie materialy. Optimizatsiya poiska (Highly Efficient Piezoceramic Materials), Rostov-on-Don: Paik, 1995.

    Google Scholar 

  7. Eitel, R.E., Shrout, T.R., and Randall, C.A., Tailoring properties and performance of (1 − x)BiScO3-xPbTiO3 based piezoceramics by lanthanum substitution, Jpn. J. Appl. Phys., 2004, vol. 43, pp. 8146–8150.

    Article  CAS  Google Scholar 

  8. Chen, S., Dong, X., Yang, H., et al., Effects of niobium doping on the microstructure and electrical properties of 0.36BiScO3–0.64PbTiO3 ceramics, J. Am. Ceram. Soc., 2007, vol. 90, pp. 477–482.

    Article  CAS  Google Scholar 

  9. Jiang, Y., Qin, B., Zhao, Y., et al., Microstructure, dielectric, and piezoelectric properties of 0.38Bi(GaxSc1 − x )O3-0.62PbTiO3 high temperature piezoelectric ceramics, Phys. Status Solidi, 2008, vol. 2, no. 1, pp. 28–30.

    CAS  Google Scholar 

  10. Sterianou, I., Sinclair, D.C., Reaney, I.M., et al., Investigation of high Curie temperature (1 − x)BiSc1 − y FeyO3-xPbTiO3 piezoelectric ceramics, J. Appl. Phys., 2009, vol. 106, paper 084 107.

  11. Winotai, P., Udomkan, N., and Meejoo, S., Piezoelectric properties of Fe2O3-doped (1 − x)BiScO3-xPbTiO3 ceramics, Sens. Actuators, A, 2005, vol. A122, pp. 257–263.

    Article  Google Scholar 

  12. Smazhevskaya, E.G. and Fel’dman, N.B., P’ezoelektricheskaya keramika (Piezoelectric Ceramics), Moscow: Sovetskoe Radio, 1971.

    Google Scholar 

  13. Zhang, Sh.J., Eitel, R.E., Randall, C.A., et al., Manganese-modified BiScO3 — PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor, Appl. Phys. Lett., 2005, vol. 86, no. 26, pp. 1–3.

    Article  Google Scholar 

  14. Chen, J., Hu, Z., Shi, H., et al., High-power piezoelectric characteristics of manganese-modified BiScO3-PbTiO3 high-temperature piezoelectric ceramics, Phys. D.: Appl. Phys, 2012, vol. 45, paper 465 303.

  15. Segalla, A.G., Golova, L.V., Gornev, E.S., et al., RF Patent 2 453 518, 2012.

  16. Gurevich, V.M., Elektroprovodnost’ segnetoelektrikov (Electrical Conductivity of Ferroelectrics), Moscow: Izd. Standartov, 1969.

    Google Scholar 

  17. Chen, Y., Zhu, J., Xiao, D., et al., Bismuth-modified BiScO3-PbTiO3 piezoelectric ceramics with high Curie temperature, Mater. Lett., 2008, vol. 62, pp. 3567–3569.

    Article  CAS  Google Scholar 

  18. Zhao, W., Wang, X., Li, L., and Gui, Z., Synthesis of nanosized (1 − x)BiScO3-xPbTiO3 ferroelectric ceramic powders, J. Electroceram., 2008, vol. 21, pp. 625–628.

    Article  CAS  Google Scholar 

  19. Zou, T., Wang, X., Zhao, W., and Li, L., Preparation and properties of fine-grain (1 − x)BiScO3 - xPbTiO3 ceramics by two-step sintering, J. Am. Ceram. Soc., 2008, vol. 91, no. 1, pp. 121–126.

    Article  CAS  Google Scholar 

  20. Zhang, L., Xu, Z., Li, Z., et al., Preparation and characterization of high T c (1 − x) BiScO3-xPbTiO3 ceramics from high energy ball milling process, J. Electroceram., 2008, vol. 21, nos. 1–4, pp. 605–608.

    Article  CAS  Google Scholar 

  21. Alguero, M., Ramos, P., Jimenez, R., et al., High temperature piezoelectric (1 − x)BiScO3 - xPbTiO3 synthesized by mechanochemical methods, Acta Mater., 2012, vol. 60, pp. 1174–1183.

    Article  CAS  Google Scholar 

  22. Nesterov, A.A., Panich, A.A., Marakhovskii, M.A., and Nagaenko, A.V., Low-temperature synthesis of PbTiO3-BiScO3 nanopowders, Fundam. Issled., 2011, no. 1, pp. 415–417.

    Google Scholar 

  23. Zou, T., Wang, X., Wang, H., et al., Bulk dense finegrain (1 − x)BiScO3-xPbTiO3 ceramics with high piezoelectric coefficient, Appl. Phys. Lett., 2008, vol. 93, paper 192 913.

  24. Kaleva, G.M., Politova, E.D., Mosunov, A.V., et al., Effect of low-melting additives on the structure, phase transitions, and dielectric properties of 0.36BiScO3–0.64PbTiO3 ceramics, Inorg. Mater., 2012, vol. 48, no. 9, pp. 953–959.

    Article  CAS  Google Scholar 

  25. Bush, A.A., Kamentsev, K.E., Lavrent’ev, A.M., et al., Dielectric and piezoelectric properties of (1 − 2x)BiScO3 · xPbTiO3 · xPbMg1/3Nb2/3O3 (0.30 ≤ x ≤ 0.46) solid solutions, Inorg. Mater., 2011, vol. 47, no. 7, pp. 779–785.

    Article  CAS  Google Scholar 

  26. Politova, E.D., Kaleva, G.M., Mosunov, A.V., et al., Processing, phase transitions, and dielectric properties of BSPT ceramics, J. Adv. Dielectr., 2013, vol. 3, paper 1 350 024.

  27. Sehirlioglu, A., Sayir, A., and Dynys, F., Microstructure-property relationships in liquid phase-sintered high-temperature bismuth scandium oxide-lead titanate piezoceramics, J. Am. Ceram. Soc., 2008, vol. 91, no. 9, pp. 2910–2916.

    Article  CAS  Google Scholar 

  28. Sehirlioglu, A., Sayir, A., and Dynys, F., Doping of BiScO3-PbTiO3 ceramics for enhanced properties, J. Am. Ceram. Soc., 2010, vol. 93, no. 6, pp. 1718–1724.

    CAS  Google Scholar 

  29. Fel’dman, N.B. and Filimoncheva, K.I., USSR Inventor’s Certificate no. 178 864, Byull. Izobret., 1966, no. 4.

    Google Scholar 

  30. Segalla, A.G., Smazhevskaya, E.G., Fel’dman, N.B., et al., Effect of ferroelectric transition conditions on the dielectric and piezoelectric properties of PZT ceramics, Izv. Akad. Nauk SSSR, Ser. Fiz., 1971, no. 9, pp. 1989–1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Segalla.

Additional information

Original Russian Text © A.G. Segalla, S.S. Nersesov, G.M. Kaleva, E.D. Politova, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 6, pp. 655–660.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segalla, A.G., Nersesov, S.S., Kaleva, G.M. et al. Ways of improving functional parameters of high-temperature ferroelectric/piezoelectric ceramics based on BiScO3-PbTiO3 solid solutions. Inorg Mater 50, 606–611 (2014). https://doi.org/10.1134/S0020168514060168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514060168

Keywords

Navigation