Skip to main content
Log in

Ferromagnetic Zn/ZnO nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract

Spherical zinc particles ranging in average size from 275 to 760 nm and covered with platelike zinc oxide particles on the order of 10 nm in size have been prepared by levitation-jet aerosol synthesis through condensation of zinc vapor in an inert-gas flow. The nanoparticles have been characterized by transmission electron microscopy, X-ray diffraction, BET measurements, and vibrating-sample magnetometry. The results indicate that the observed ferromagnetic ordering is due to changes in unit-cell volume on the surface of the nanoparticles. High-temperature magnetization data demonstrate that the ferromagnetic ordering of the nanoparticles persists up to 750 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dietl, T., Ohno, H., Matsukura, F., et al., Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science, 2000, vol. 287, p. 1019.

    Article  CAS  Google Scholar 

  2. Ando, K., Saito, H., Jin, Z., et al., Magneto-optical properties of ZnO-based diluted magnetic semiconductors, J. Appl. Phys., 2001, vol. 89, no. 11, p. 7284.

    Article  CAS  Google Scholar 

  3. Kittilstved, K.R., Norberg, N.S., and Gamelin, D.R., Chemical manipulation of high-TC ferromagnetism in ZnO diluted magnetic semiconductors, Phys. Rev. Lett., 2005, vol. 94, no. 14, p. 147 209.

    Article  Google Scholar 

  4. Xing, G.Z., Yi, J.B., Tao, J.G., et al., Comparative study of room-temperature ferromagnetism in Cudoped ZnO nanowires enhanced by structural inhomogeneity, Adv. Mater., 2008, vol. 20, no. 18, p. 3521.

    Article  CAS  Google Scholar 

  5. Snure, M., Kumar, D., and Tiwari, A., Progress in ZnO-based diluted magnetic semiconductors, JOM, 2009, vol. 61, no. 6, p. 72.

    Article  CAS  Google Scholar 

  6. Jagadish, C. and Pearton, S.J., Zinc Oxide Bulk, Thin Films and Nanostructures, Amsterdam: Elsevier, 2006.

    Google Scholar 

  7. Abraham, D.W., Frank, M.M., and Guha, S., Absence of magnetism in hafnium oxide films, Appl. Phys. Lett., 2005, vol. 87, no. 25, p. 252 502.

    Article  Google Scholar 

  8. McCluskey, M.D. and Jokela, S.J., Defects in ZnO, J. Appl. Phys., 2009, vol. 106, no. 7, p. 071 101.

    Article  Google Scholar 

  9. Khalid, M., Ziese, M., Setzer, A., et al., Defectinduced magnetic order in pure ZnO films, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 80, no. 3, paper 035 331.

    Google Scholar 

  10. Coey, J.M.D., d0 ferromagnetism, Solid State Sci., 2005, vol. 7, no. 6, p. 660.

    Article  CAS  Google Scholar 

  11. Coey, J.M.D., Wongsaprom, K., Alaria, J., and Venkatesan, M., Charge-transfer ferromagnetism in oxide nanoparticles, J. Phys. D: Appl. Phys., 2008, vol. 41, no. 13, p. 134 012.

    Article  Google Scholar 

  12. Venkatesan, M., Fitzgerald, C., and Coey, J.M.D., Unexpected ferromagnetism in a dielectric oxide, Nature, 2004, vol. 430, p. 630.

    Article  CAS  Google Scholar 

  13. Hong, N.H., Sakai, J., Poirot, N., and Brize, V., Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 73, no. 13, p. 132 404.

    Article  Google Scholar 

  14. Hong, N.H., Poirot, N., and Sakai, J., Ferromagnetism observed in pristine SnO2 thin films, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, no. 3, paper 033 205.

    Google Scholar 

  15. Xing, G.Z., Yi, J.B., Wang, D.D., et al., Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3-δ nanostructures, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 79, no. 17, p. 174 406.

    Article  Google Scholar 

  16. Chan, J.A., Lany, S., and Zunger, A., Electronic correlation in anion p orbitals impedes ferromagnetism due to cation vacancies in Zn chalcogenides, Phys. Rev. Lett., 2009, vol. 103, no. 1, paper 016 404.

    Article  Google Scholar 

  17. Araujo, C.M., Kapilashrami, M., Xu, J., et al., Room temperature ferromagnetism in pristine MgO thin films, Appl. Phys. Lett., 2010, vol. 96, no. 23, p. 232 505.

    Article  Google Scholar 

  18. Liao, L., Yan, B., Hao, Y.F., et al., P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires, Appl. Phys. Lett., 2009, vol. 94, no. 11, p. 113 106.

    Article  Google Scholar 

  19. Xu, Q.Y., Schmidt, H., Zhou, S., et al., Room temperature ferromagnetism in ZnO films due to defects, Appl. Phys. Lett., 2008, vol. 92, no. 8, paper 082 508.

    Google Scholar 

  20. Wang, Q., Sun, Q., Chen, G., et al., Vacancy-induced magnetism in ZnO thin films and nanowires, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, no. 20, p. 205 411.

    Article  Google Scholar 

  21. Gao, D.Q., Zhang, Z.H., Fu, J.L., et al., Room temperature ferromagnetism of pure ZnO nanoparticles, J. Appl. Phys., 2009, vol. 105, no. 11, p. 113 928.

    Article  Google Scholar 

  22. Majumder, S., Paramanik, D., Gupta, A., and Varma, S., Observation of magnetic-domains in undoped ZnO grains at room temperature, Appl. Surf. Sci., 2009, vol. 256, no. 2, p. 513.

    Article  CAS  Google Scholar 

  23. Hong, N.H., Barla, A., Sakai, J., and Huong, N.Q., Can undoped semiconducting oxides be ferromagnetic?, Phys. Status Solidi C, 2007, vol. 4, no. 12, p. 4461.

    Article  CAS  Google Scholar 

  24. Li, Y.F., Deng, R., Yao, B., et al., Tuning ferromagnetism in MgxZn1 − x O thin films by band gap and defect engineering, Appl. Phys. Lett., 2010, vol. 97, no. 10, p. 102506.

    Article  Google Scholar 

  25. Zhang, X., Cheng, Y.H., Li, L.Y., et al., Evidence for high-Tc ferromagnetism in Znx(ZnO)1 − x granular films mediated by native point defects, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 80, no. 17, p. 174427.

    Article  Google Scholar 

  26. Schoenhalz, A.L., Arantes, J.T., Fazzio, A., and Dalpian, G.M., Surface magnetization in non-doped ZnO nanostructures, Appl. Phys. Lett., 2009, vol. 94, no. 16, p. 162503.

    Article  Google Scholar 

  27. Kim, D., Yang, J.H., and Hong, J., Ferromagnetism induced by Zn vacancy defect and lattice distortion in ZnO, J. Appl. Phys., 2009, vol. 106, no. 1, paper 013 908.

    Google Scholar 

  28. Chakrabarty, A. and Patterson, C.H., Defect-trapped electrons and ferromagnetic exchange in ZnO, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 84, no. 5, paper 054441.

    Google Scholar 

  29. Liu, W., Li, W., Hu, Z., et al., Effect of oxygen defects on ferromagnetic of undoped ZnO, J. Appl. Phys., 2011, vol. 110, no. 1, paper 013901.

    Google Scholar 

  30. Gen, M.Ya. and Miller, A.V., Levitation synthesis of ultrafine metal powders, Poverkhnost, 1983, no. 2, p. 150.

    Google Scholar 

  31. Morozov, Yu.G., Belousova, O.V., and Kuznetsov, M.V., Preparation of nickel nanoparticles for catalytic applications, Inorg. Mater., 2011, vol. 47, no. 1, p. 36.

    Article  CAS  Google Scholar 

  32. Morozov, Yu.G., Belousova, O.V., Kuznetsov, M.V., et al., Electric field-assisted levitation-jet aerosol synthesis of Ni/NiO nanoparticles, J. Mater. Chem., 2012, vol. 22, no. 22, p. 11214.

    Article  CAS  Google Scholar 

  33. Tablitsy fizicheskikh velichin. Spravochnik (Tables of Physical Quantities: A Handbook), I.K. Kikoin, Ed., Moscow: Atomizdat, 1976.

    Google Scholar 

  34. Garcia, M.A., Merino, J.M., Fernández Pinel, E., et al., Magnetic properties of ZnO nanoparticles, Nano Lett., 2007, vol. 7, no. 6, p. 1489.

    Article  CAS  Google Scholar 

  35. Ortega, D., Chen, S.J., Suzuki, K., and Garitaonandia, J.S., Room temperature spontaneous magnetization in calcined trioctylphosphine-ZnO nanoparticles, J. Appl. Phys., 2012, vol. 111, no. 7, p. 07C314.

    Article  Google Scholar 

  36. Sundaresan, A., Bhargavi, R., Rangarajan, N., et al., Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74, no. 16, p. 161306.

    Article  Google Scholar 

  37. Xu, X., Xu, C., Dai, J., et al., Size dependence of defect-induced room temperature ferromagnetism in undoped ZnO nanoparticles, J. Phys. Chem., 2012, vol. 116, p. 8813.

    CAS  Google Scholar 

  38. Banerjee, S., Mandal, M., Gayathri, N., and Sardar, M., Enhancement of ferromagnetism upon thermal annealing in pure ZnO, Appl. Phys. Lett., 2007, vol. 91, no. 18, p. 182 501.

    Article  Google Scholar 

  39. Kapilashrami, M., Xu, J., Ström, V., et al., Transition from ferromagnetism to diamagnetism in undoped ZnO thin films, Appl. Phys. Lett., 2009, vol. 95, no. 3, paper 033 104.

    Google Scholar 

  40. Xing, G.Z., Lu, Y.H., and Tian, Y.F., Defect-induced magnetism in undoped wide band gap oxides: zinc vacancies in ZnO as an example, AIP Adv., 2011, vol. 1, no. 2, paper 022 152.

    Google Scholar 

  41. Adeagbo, W.A., Fischer, G., Ernst, A., and Hergert, W., Magnetic effects of defect pair formation in ZnO, J. Phys.: Condens. Matter, 2010, vol. 22, no. 43, p. 436002.

    CAS  Google Scholar 

  42. Straumal, B.B., Mazilkin, A.A., Protasova, S.G., et al., Magnetization study of nanograined pure and Mndoped ZnO films: formation of a ferromagnetic grainboundary foam, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 79, no. 20, p. 205206.

    Article  Google Scholar 

  43. Peng, H., Xiang, H.J., Wei, S-H., et al., Origin and enhancement of hole-induced ferromagnetism in firstrow d0 semiconductors, Phys. Rev. Lett., 2009, vol. 102, no. 1, paper 017201.

    Article  Google Scholar 

  44. Morozov, Yu.G., Belousova, O.V., Ortega, D., et al., Some peculiarities in the magnetic behavior of aerosol generated NiO nanoparticles, J. Alloys Compd., 2013, vol. 572, p. 150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kuznetsov.

Additional information

Original Russian Text © M.V. Kuznetsov, Yu.G. Morozov, O.V. Belousova, D. Ortega, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 4, pp. 399–409.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, M.V., Morozov, Y.G., Belousova, O.V. et al. Ferromagnetic Zn/ZnO nanoparticles. Inorg Mater 50, 369–378 (2014). https://doi.org/10.1134/S0020168514040104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514040104

Keywords

Navigation