Skip to main content
Log in

Formation of oxide phases from anion-modified zirconium hydroxide during mechanochemical activation

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of tungstate and molybdate anions on the formation of zirconia polymorphs from amorphous anion-modified zirconium hydroxide during mechanochemical processing. The results demonstrate that the effect of anion additives on the formation of metastable zirconia from amorphous zirconium hydroxide during mechanochemical processing differs in a number of important points from that in thermochemical processes. In thermal processes, anion additives favor the formation and stabilization of nanocrystalline tetragonal zirconia. By contrast, in mechanochemical synthesis, anion additions inhibit the formation of metastable zirconia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arata, K., Preparation of superacids by metal oxides for reactions of butanes and pentanes, Appl. Catal., A, 1996, vol. 146, p. 3.

    Article  CAS  Google Scholar 

  2. Hino, M. and Arata, K., Synthesis of solid superacid of tungsten oxide supported on zirconia and its catalytic action for reactions of butane and pentane, J. Chem. Soc., Chem. Commun., 1988, p. 1259.

    Google Scholar 

  3. Yadav, G.D. and Nair, J.J., Sulfated oxide zirconia and his modifications as perspective catalysts for industrial processes, Micropor. Mesopor. Mater., 1999, vol. 33, p. 1.

    Article  CAS  Google Scholar 

  4. Santiesteban, J.G., Vartuli, J.C., Han, S., et al., Influence of the preparative method on the activity of highly acidic WOx/ZrO2 and the relative acid activity compared with zeolites, J. Catal., 1997, vol. 168, pp. 431–441.

    Article  CAS  Google Scholar 

  5. Ivanov, A.V. and Kustov, L.M., Zirconia-based solid superacids: nature of active centers and isomerization of alkanes, Poss. Khim. Zh., 2000, vol. 44, p. 21.

    CAS  Google Scholar 

  6. Song, K., Zhang, H., Zhang, Y., et al., Preparation and characterization of WOx/ZrO2 nanosized catalysts with high WOx dispersion threshold and acidity, J. Catal., 2013, vol. 299, p. 119.

    Article  CAS  Google Scholar 

  7. Kuznetsov, P.N., Kuznetsova, L.I., and Kazbanova, A.V., Catalytic alkane isomerization on anion-modified zirconias, Khim. Ustoich. Razvit., 2010, no. 3, p. 299.

    Google Scholar 

  8. Kuznetsova, L.I., Kazbanova, A.V., and Kuznetsov, P.N., Texturing properties and crystal structure of tungstate-anion-modified zirconia as a catalyst for isomerization of light alkanes, Neftekhimiya, 2012, vol. 52, no. 5, p. 377.

    Google Scholar 

  9. Mercera, P.D.L., van Ommen, J.G., Doesburgh, E.B.M., et al., Stabilized tetragonal zirconium oxide as a support for catalysts: evolution of the texture and structure on calcination in static air, Appl. Catal., A, 1991, vol. 78, p. 79.

    Article  CAS  Google Scholar 

  10. Gopalan, R., Chang, C.H., and Lin, Y.S., Thermal stability improvement on pore and phase structure of solgel derived zirconia, J. Mater. Sci., 1995, vol. 30, no. 12, p. 3075.

    Article  CAS  Google Scholar 

  11. Garvie, R.C., The occurrence of metastable tetragonal zirconia as a crystallite size effect, J. Phys. Chem., 1965, vol. 69, no. 4, p. 1238.

    Article  CAS  Google Scholar 

  12. Boldyrev, V.V., Solid-state chemistry at the turn of the century, Ross. Khim. Zh., 2000, vol. 44, no. 6, p. 14.

    CAS  Google Scholar 

  13. Avvakumov, E.G., Mekhanokhimicheskie metody aktivatsii khimicheskikh protsessov (Mechanochemical Methods for the Activation of Chemical Processes), Nauka: Novosibirsk, 1986.

    Google Scholar 

  14. Kuznetsov, P.N., Kuznetsova, L.I., Zhyzhaev, A.M., et al., Ultra fast synthesis of metastable tetragonal zirconia by means of mechanochemical activation, Appl. Catal., A, 2002, vol. 227, p. 299.

    Article  CAS  Google Scholar 

  15. Karakchiev, L.G., Avvakumov, E.G., Vinokurova, O.B., et al., Formation of ZrO2-Y2O3 solid solution during thermal processing of mechanically activated salt mixtures, Russ. J. Inorg. Chem., 2004, vol. 49, no. 5, p. 749.

    Google Scholar 

  16. Karagedov, G.K., Shatskaya, S.S., and Lyakhov, N.Z., The nature of a mechanically stimulated phase transition in zirconia, Khim. Ustoich. Razvit., 2006, no. 4, p. 369.

    Google Scholar 

  17. Karagedov, G.R. and Avvakumov, E.G., Low-temperature synthesis of nanokpowders for the production of dense ZrO2-8 mol % Y2O3 ceramics, Khim. Ustoich. Razvit., 2011, no. 5, p. 521.

    Google Scholar 

  18. Avvakumov, E.G., Soft mechanochemical synthesis: a basis of novel chemical technologies, Khim. Ustoich. Razvit., 1994, vol. 2, nos. 2–3, p. 541.

    Google Scholar 

  19. Kuznetsov, P.N., Kuznetsova, L.I., Zhyzhaev, A.M., et al., Investigation of mechanically stimulated solid phase polymorphic transition of zirconia, Appl. Catal., A, 2006, vol. 298, p. 254.

    Article  CAS  Google Scholar 

  20. Kuznetsov, P.N., Kuznetsova, L.I., Zhizhaev, A.M., et al., Effect of Fe3+ and Y3+ cations on the crystallization behavior of tetragonal zirconia during mechanochemical activation of amorphous zirconium hydroxide, Khim. Ustoich. Razvit., 2003, no. 11, p. 601.

    Google Scholar 

  21. Avvakumov, E.G., Kosova, I.V., and Aleksandrov, V.V., Defect formation during mechanical activation of titanium, tin, and tungsten oxides, Izv. Akad. Nauk SSSR, Neorg. Mater., 1983, vol. 19, no. 7, p. 1118.

    CAS  Google Scholar 

  22. Albrecht, R., Hausler, H., and Mobius, R., Beitrag zur Tribochemie des W(VI) Oxides, Z. Anorg. Allg. Chem., 1970, vol. 377, p. 310.

    Article  CAS  Google Scholar 

  23. Heinicke, G., Tribochemistry, Berlin: Akademie, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Kuznetsov.

Additional information

Original Russian Text © P.N. Kuznetsov, A.V. Kazbanova, L.I. Kuznetsova, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 4, pp. 423–429

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, P.N., Kazbanova, A.V. & Kuznetsova, L.I. Formation of oxide phases from anion-modified zirconium hydroxide during mechanochemical activation. Inorg Mater 50, 392–397 (2014). https://doi.org/10.1134/S0020168514040098

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514040098

Keywords

Navigation