Skip to main content
Log in

Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate

  • Published:
Inorganic Materials Aims and scope

Abstract

Terbium oxide films have been grown on Si(111) substrates by decomposition of Tb(dpm)3 vapor in argon flow at Tb(dpm)3 source temperatures of 170 and 190°C and substrate temperatures from 470 to 550°C. The films have been annealed in air at temperatures of 400, 650, and 800°C. X-ray diffraction characterization results show that the films grown by chemical vapor deposition consist of cubic Tb2O3. The films annealed in air at 650 and 800°C are isostructural with Tb4O7, and those annealed at 400°C are isostructural with Tb11O20. According to X-ray photoelectron spectroscopy data, the 9-nm-thick surface layer of the Tb2O3 film has the correct stoichiometry O: Tb = 1.48, whereas the film annealed at 800°C has O: Tb = 1.85. Raman spectroscopy data demonstrate that the concentration of carbon-containing species on the surface of the films decreases with decreasing substrate temperature and can be brought to zero by air annealing at 800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vdovin, O.S., Kir’yashkina, Z.I., Kotelkov, V.N., et al., Plenki oksidov redkozemel’nykh elementov v MDM i MDP strukturakh (Rare-Earth Oxide Films in MIM and MIS Structures), Saratov: Universitet, 1983.

    Google Scholar 

  2. Moseley, P.T., Materials selection for semiconductor gas sensor, Sens. Actuators, B, 1992, vol. 6, p. 149.

    Article  CAS  Google Scholar 

  3. Jones, A.C., Aspinall, H.C., and Chalkes, P.R., Chemical Vapour Deposition: Precursors, Processes and Applications, London: Royal Society of Chemistry, 2009, pp. 357–412.

    Google Scholar 

  4. Daly, J.G., Schmidt, J.A., and Gruber, J.B., Selective site excitation of europium-doped monoclinic Gd2O3, Phys. Rev. B: Condens. Matter Mater. Phys., 1983, vol. 27, no. 9, p. 5250.

    Article  CAS  Google Scholar 

  5. Kaul’, A.R., Chemical methods for producing films and coatings of high-T c superconductors, Zh. Vses. Khim. o-va. im. D. I. Mendeleeva, 1989, vol. 34, no. 4, p. 492.

    Google Scholar 

  6. Bonnet, G., Lachkar, M., Colson, J.C., and Larpin, J.P., Characterization of thin solid films of rare earth oxides formed by the MOCVD technique, for high temperature corrosion applications, Thin Solid Films, 1995, vol. 261, p. 31.

    Article  CAS  Google Scholar 

  7. Bakovets, V.V., Levashova, T.M., Ratushnyak, V.T., and Bakhturova, L.F., Chemical Vapor Deposition of Y2O3 Films Using Y(dpm)3, Inorg. Mater., 2002, vol. 38, no. 4, p. 371.

    Article  CAS  Google Scholar 

  8. Nigro Lo, R., Raineri, V., Bongiorno, C., et al., Dielectric properties of Pr2O3 high-k films grown by metalorganic chemical vapor deposition on silicon, Appl. Phys. Lett., 2003, vol. 83, no. 1, p. 129.

    Article  Google Scholar 

  9. Progress in the Science and Technology of the Rare Earths, Eyring, L., Ed., Oxford: Pergamon, 1966. Translated under the title Uspekhi v khimii i tekhnologii redkozemel’nykh elementov, Moscow: Metallurgiya, 1970, pp. 180–183.

    Google Scholar 

  10. Sievers, R.E., Eisentraut, K.J., and Springer, C.S., Volatile rare earth chelates of β-diketones, Lanthanide/Actinide Chemistry, Gould, R.F., Ed., Washington, DC: Am. Chem. Soc., 1967, pp. 141–154.

    Chapter  Google Scholar 

  11. Stabnikov, P.A., Zharkova, G.I., Smolentsev, A.I., et al., Structure and properties of terbium(III) dipivaloylmethanate and its adducts with Bipy and Phen, J. Struct. Chem., 2011, vol. 52, no. 3, p. 560.

    Article  CAS  Google Scholar 

  12. Powder Diffraction File, Inorganic Phases, International Center for Diffraction Data, 2010.

  13. Handbook of X-ray Photoelectron Spectroscopy, Moulder, J.F., Stickle, W.F., Sobol, P.E., et al., Eds., Eden Prairie: PerkinElmer, 1992.

    Google Scholar 

  14. Sherwood, P.M.A., Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Briggs, D. and Seah, M., Eds., New York: Wiley, 1983.

  15. Smirnova, T.P., Volodin, V.A., Belyi, V.I., et al., Raman scattering spectroscopy of inclusions of carbon in Al2O3 films and its solid solutions with HfO2, Opt. Spectrosc., 2011, vol. 110, no. 1, p. 48.

    Article  Google Scholar 

  16. Flores-Gonzalez, M.A., Ledoux, G., Roux, S., et al., Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method, J. Solid State Chem., 2005, vol. 178, p. 989.

    Article  CAS  Google Scholar 

  17. Baenziger, N.C., Eick, H.A., Schuldt, H.S., et al., Terbium oxides. III. X-ray diffraction studies of several stable phases, J. Am. Chem. Soc., 1961, vol. 83, no. 10, p. 2219.

    Article  CAS  Google Scholar 

  18. Sugihara, T., Sheng, H.L., and Eyring, L., The kinetics of oxidation of ϕ-phase terbium oxide: 7/2Tb2O3 + δ + (3/4−7/4δ)O2 → Tb7O12, J. Solid State Chem., 1981, vol. 40, p. 189.

    Article  CAS  Google Scholar 

  19. Andreeva, A.F. and Gil’man, I.Ya., Poluchenie i svoistva tonkikh plenok (Preparation and Properties of Thin Films), Kiev, 1997, issue 4, pp. 107–111.

    Google Scholar 

  20. Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., and Powell, C.J., NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Reference Database 20, Version 4.1, 2012.

    Google Scholar 

  21. Guodong, F., Changgen, F., and Zhao, Z., Surface and texture properties of Tb-doped ceria-zirconia solid solution prepared by sol-gel method, J. Rare Earths, 2007, vol. 25, p. 42.

    Article  Google Scholar 

  22. Dai, H.X., Wong, K.W., et al., SrCl2-promoted REO (RE = Ce, Pr, Tb) catalysts for the selective oxidation of ethane: a study on performance and defect structure—for ethene formation, J. Catal., 2001, vol. 199, no. 2, p. 177.

    Article  CAS  Google Scholar 

  23. Sarma, D.D. and Rao, C.N., XPES of oxides of second- and third row transition metals including rare earths, J. Electron Spectrosc. Relat. Phenom., 1980, vol. 20, p. 25.

    Article  CAS  Google Scholar 

  24. Zelikman, A.N., Metallurgiya redkozemel’nykh metallov toriya i urana (Metallurgy of the Rare-Earth Metals, Thorium, and Uranium), Moscow: Metallurgiya, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Belaya.

Additional information

Original Russian Text © S.V. Belaya, V.V. Bakovets, A.I. Boronin, S.V. Koshcheev, M.N. Lobzareva, I.V. Korolkov, P.A. Stabnikov, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 4, pp. 410–417.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belaya, S.V., Bakovets, V.V., Boronin, A.I. et al. Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate. Inorg Mater 50, 379–386 (2014). https://doi.org/10.1134/S0020168514040037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514040037

Keywords

Navigation