Skip to main content

Thermodynamic analysis of the growth of germanium-containing films from Ge(C2H5)4 + hydrogen mixtures

Abstract

Low-pressure (1.33 and 13.3 Pa) chemical vapor deposition (CVD) of GeC x from tetraethylger-manium + hydrogen mixtures has been analyzed in a wide range of deposition temperatures, 300–1300 K, using thermodynamic modeling. In low-pressure CVD processes, films can be contaminated with impurities, in particular with oxygen, which may originate in the system in question from the residual air pressure in the reactor. Modeling results for the Ge-C-H and Ge-C-H-O-N systems indicate that the presence of oxygen adds significant complexity to the composition of condensed phases. At sufficiently high temperatures (T > 550 K), one can obtain GeC x films essentially free from oxygen impurities. We have identified deposition conditions (T > 650 K) under which the overall composition of the GeC x carbon-containing germanium layers remains constant. Experimental data are presented on the growth of germanium-containing films from a gas mixture with GeEt4: H2 = 1: 10 in the temperature range 573–823 K by plasma-enhanced CVD. At high deposition temperatures (T > 700 K), the composition of the films was near GeC x , in agreement with thermodynamic analysis results.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Zoita, C.N., Grigorescu, C.E.A., Vasiliu, I.C., et al., Influence of process parameters on structure and optical properties of GeC thin films deposited by rf magnetron sputtering, Thin Solid Films, 2011, vol. 519, p. 4101.

    CAS  Article  Google Scholar 

  2. 2.

    Hu, C.Q., Zhu, J.Q., Zheng, W.T., et al., Annealing effects on the bonding structures, optical and mechanical properties for radio frequency reactive sputtered germanium carbide films, Appl. Surf. Sci., 2009, vol. 255, no. 6, p. 3552.

    CAS  Article  Google Scholar 

  3. 3.

    Yangping Li, Zhengtang Liu, Hailong Zhao, et al., Infrared transmission properties of germanium carbon thin films deposited by reactive rf magnetron sputtering, Vacuum, 2009, vol. 83, no. 6, p. 965.

    Article  Google Scholar 

  4. 4.

    Wu, X., Zhang, W., Yan, L., and Luo, R., The deposition and optical properties of Ge1 − x Cx thin film and infrared multilayer antireflection coatings, Thin Solid Films, 2008, vol. 516, no. 10, p. 3189.

    CAS  Article  Google Scholar 

  5. 5.

    Szmidt, J., Gazicki-Lipman, M., Szymanowski, H., et al., Electrophysical properties of thin germanium/carbon layers produced on silicon using organometallic radio frequency plasma enhanced chemical vapor deposition process, Thin Solid Films, 2003, vol. 441, nos. 1–2, p. 192.

    CAS  Article  Google Scholar 

  6. 6.

    Saito, N., Iwata, H., Nakaaki, I., et al., Amorphous and microcrystalline GeC:H films prepared by magnetron sputtering, Phys. Status Solidi A, 2009, vol. 206, no. 2, p. 238.

    CAS  Article  Google Scholar 

  7. 7.

    Hu, C.Q., Zhu, J.Q., Zheng, W.T., et al., Annealing effects on the bonding structures, optical and mechanical properties for radio frequency reactive sputtered germanium carbide films, Appl. Surf. Sci., 2009, vol. 255, no. 6, p. 3552.

    CAS  Article  Google Scholar 

  8. 8.

    Saito, N., Nakaaki, I., Iwata, H., et al., Optical and electrical properties of undoped and oxygen-doped a-GeC:H films prepared by magnetron sputtering, Thin Solid Films, 2007, vol. 515, nos. 7–8, p. 3766.

    CAS  Article  Google Scholar 

  9. 9.

    Benzi, P., Botizzo, E., and Demaria, C., Characterization and properties of Ge1 − x Cx:H compounds obtained by X-ray CVD of germane/ethyne systems: Effect of the irradiation dose, Chem. Vap. Deposition, 2006, vol. 12, no. 1, p. 25.

    CAS  Article  Google Scholar 

  10. 10.

    Benzi, P., Castiglioni, M., Truffa, E., et al., Thin film deposition of GexCyHz by radiolysis of GeH4-C3H8 mixtures, J. Mater. Chem., 1996, vol. 6, p. 1507.

    CAS  Article  Google Scholar 

  11. 11.

    Kelly, D.Q., Wiedmann, I., Garcia-Gutierres, D.I., et al., Thin germanium-carbon layers deposited directly on silicon for metal-oxide-semiconductor devices, Semicond. Sci. Technol., 2007, vol. 22, p. 204.

    Article  Google Scholar 

  12. 12.

    Tyczkowski, J. and Ledzion, R., Electronic band structure of insulating hydrogenated carbon-germanium films, J. Appl. Phys., 1999, vol. 86, no. 8, p. 4412.

    CAS  Article  Google Scholar 

  13. 13.

    Gazicki, M., Szymanowski, H., Tyczkowsky, J., et al., Chemical bonding in thin Ge/C films deposited from tetraethylgermanium in an r.f. glow discharge-an FTIR study, Thin Solid Films, 1995, vol. 256, p. 31.

    CAS  Article  Google Scholar 

  14. 14.

    Gazicki, M., Szymanowski, H., Tyczkowsky, J., et al., Correlation between gas phase composition of rf plasma of argon diluted tetraethylgermanium and chemical structure of therewith deposited Ge/C films, J. Vac. Sci. Technol., A, 1996, vol. 14, no. 5, p. 2835.

    CAS  Article  Google Scholar 

  15. 15.

    Matsutani, T., Kiuchi, M., and Takeuchi, T., Preparation of Ge-C films by low-energy ion beam induced chemical vapor deposition with hexamethyldigermane, Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, vol. 257, p. 261.

    CAS  Article  Google Scholar 

  16. 16.

    Golubenko, A.N., Kosinova, M.L., Titov, A.A., et al., Thermodynamic modeling of BCN chemical vapor deposition from N-trimethylborazine + ammonia mixtures, Inorg. Mater., 2012, vol. 48, no. 7, p. 691.

    CAS  Article  Google Scholar 

  17. 17.

    Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., et al., Tris(diethylamino)silane-a new precursor compound for obtaining layers of silicon carbonitride, Glass Phys. Chem., 2012, vol. 38, no. 1, p. 15.

    CAS  Article  Google Scholar 

  18. 18.

    Golubenko, A.N., Kosinova, M.L., Titov, V.A., et al., On thermodynamic equilibrium of the solid BN and gas phases in B-N-H-Cl-He system, Thin Solid Films, 1996, vol. 293, p. 11.

    Article  Google Scholar 

  19. 19.

    Kuznetsov, F.A., Titov, V.A., Titov, A.A., et al., Data bank of properties of microelectronic materials, Proc. Int. Symp. on Advanced Materials, 1995, p. 16–32.

    Google Scholar 

  20. 20.

    Termodinamicheskie svoistva individual’nykh veshchestv (Thermodynamic Properties of Pure Substances), Glushko, V.P. et al., Eds., Moscow: Nauka, 1979, vol. 2, part 2.

    Google Scholar 

  21. 21.

    Powder Diffraction File, Int. Centre for Diffraction Data, card no. 4-545.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. N. Golubenko.

Additional information

Original Russian Text © A.N. Golubenko, M.L. Kosinova, Yu.M. Rumyantsev, F.A. Kuznetsov, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 2, pp. 121–126.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Golubenko, A.N., Kosinova, M.L., Rumyantsev, Y.M. et al. Thermodynamic analysis of the growth of germanium-containing films from Ge(C2H5)4 + hydrogen mixtures. Inorg Mater 50, 107–112 (2014). https://doi.org/10.1134/S0020168514020046

Download citation

Keywords

  • Germanium
  • Deposition Temperature
  • Oxygen Impurity
  • Hydrogen Mixture
  • Silicon Carbonitride